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AIMS AND SCOPE

Turkish Journal of Electrical Power and Energy Systems (TEPES) 
is an international, scientific, open access periodical published 
in accordance with independent, unbiased, and double-blind-
ed peer-review principles. The journal is the official online-only 
publication with the support of Association of Turkish Electricity 
Industry (TESAB) and led by CIGRE Turkish National Committee. 
and it is published biannually in April and October. The publication 
language of the journal is English.
 
TEPES aims to contribute to the literature by publishing manuscripts 
at the highest scientific level on all fields of electrical power and en-
ergy systems. The journal publishes original research and review ar-
ticles that are prepared in accordance with ethical guidelines. 

The scope of the journals includes but not limited to:
1.	 Power Generation, Transmission and Distribution
•	 Conventional and renewable power generation
•	 Transmission systems
•	 Distribution Systems, automation and control
•	 Energy efficiency
•	 Electromagnetic analysis and compatibility in power systems
•	 HVDC and flexible AC transmission system (FACTS)
•	 Renewable energy technologies and system
•	 Transmission and distribution equipment
•	 Insulated cables
•	 Overhead lines
•	 Substations 
•	 Electrical Power System Protection
•	 Smart-Grid
•	 Plasma physics and the pulsed power technology
•	 Information systems and telecommunication
•	 Electric vehicles and charging networks
•	 Measurement
•	 Power System control 
•	 Demand Response

2.	 Power System Management
•	 Power system development and economics
•	 Power system operation, planning and control
•	 Power system environmental performance
•	 Power system technical performance
•	 Electricity markets and regulation
•	 Load modeling, estimation and forecast

3.	 High-Voltage Techniques
•	 Measurement systems
•	 Electrical materials
•	 Emerging test techniques
•	 Insulation condition and coordination in power systems
•	 Over-voltage, lightning protection and grounding
•	 Ultra-High Voltage (UHV) technologies
•	 Electrical installations

4.	 Electrical Machines
•	 Power electronics
•	 Electrical Machines and Drives

•	 Power transformers and reactors
•	 Design of Electrical Machines for Sustainable Energy Applica-

tions

The target audience of the journal includes academicians, spe-
cialists, researchers and professionals who are working and inter-
ested in the field of electrical power and energy systems.
 
The editorial and publication processes of the journal are shaped 
in accordance with the guidelines of the Institute of Electrical and 
Electronics Engineers (IEEE), the World Commission on the Eth-
ics of Scientific Knowledge and Technology (COMEST), Council of 
Science Editors (CSE), Committee on Publication Ethics (COPE), 
European Association of Science Editors (EASE), and National In-
formation Standards Organization (NISO). The journal is in con-
formity with the Principles of Transparency and Best Practice in 
Scholarly Publishing (doaj.org/bestpractice).
 
Processing and publication are free of charge with the journal. No 
fees are requested from the authors at any point throughout the 
evaluation and publication process. All manuscripts must be sub-
mitted via the online submission system, which is available at www.
tepesjournal.org. The journal guidelines, technical information, and 
the required forms are available on the journal’s web page.
 
All expenses of the journal are covered by the CIGRE Turkish Na-
tional Committee. Potential advertisers should contact the Edi-
torial Office. Advertisement images are published only upon the 
Editor-in-Chief’s approval.
 
Statements or opinions expressed in the manuscripts published 
in the journal reflect the views of the author(s) and not the opin-
ions of the CIGRE Turkish National Committee, editors, editorial 
board, and/or publisher; the editors, editorial board, and publisher 
disclaim any responsibility or liability for such materials.

Turkish Journal of Electrical Power and Energy Systems is an open 
access publication and the journal’s publication model is based 
on Budapest Open Access Initiative (BOAI) declaration. Journal’s 
archive is available online, free of charge at www.tepesjournal.
org. The content of the journal is licensed under a Creative Com-
mons Attribution-NonCommercial 4.0 International License.

Editor in Chief: Belgin EMRE TÜRKAY
Address: Department of Electrical Engineering, İstanbul Technical 
University (ITU) Faculty of Electrical and Electronics Engineering, 
İstanbul, Turkey
E-mail: info@tepesjournal.org

Publisher: AVES
Address: Büyükdere Cad., 105/9 34394 Mecidiyeköy, Şişli, İstan-
bul, Turkey
Phone: +90 212 217 17 00
Fax: +90 212 217 22 92
E-mail: info@avesyayincilik.com



INSTRUCTIONS TO AUTHORS

Turkish Journal of Electrical Power and Energy Systems (TEPES) 
is an international, scientific, open access periodical published 
in accordance with independent, unbiased, and double-blind-
ed peer-review principles. The journal is the official online-only 
publication with the support of Association of Turkish Electricity 
Industry (TESAB) and led by CIGRE Turkish National Committee, 
and it is published biannually in April and October. The publica-
tion language of the journal is English.
 
TEPES aims to contribute to the literature by publishing man-
uscripts at the highest scientific level on all fields of electrical 
power and energy systems. The journal publishes original re-
search and review articles that are prepared in accordance with 
ethical guidelines. 

The scope of the journals includes but not limited to:
1.	 Power Generation, Transmission and Distribution
•	 Conventional and renewable power generation
•	 Transmission systems
•	 Distribution Systems, automation and control
•	 Energy efficiency
•	 Electromagnetic analysis and compatibility in power systems
•	 HVDC and flexible AC transmission system (FACTS)
•	 Renewable energy technologies and system
•	 Transmission and distribution equipment
•	 Insulated cables
•	 Overhead lines
•	 Substations 
•	 Electrical Power System Protection
•	 Smart-Grid
•	 Plasma physics and the pulsed power technology
•	 Information systems and telecommunication
•	 Electric vehicles and charging networks
•	 Measurement
•	 Power System control 
•	 Demand Response

2.	 Power System Management
•	 Power system development and economics
•	 Power system operation, planning and control
•	 Power system environmental performance
•	 Power system technical performance
•	 Electricity markets and regulation
•	 Load modeling, estimation and forecast

3.	 High-Voltage Techniques
•	 Measurement systems
•	 Electrical materials
•	 Emerging test techniques

•	 Insulation condition and coordination in power systems
•	 Over-voltage, lightning protection and grounding
•	 Ultra-High Voltage (UHV) technologies
•	 Electrical installations

4.	  Electrical Machines
•	 Power electronics
•	 Electrical Machines and Drives
•	 Power transformers and reactors
•	 Design of Electrical Machines for Sustainable Energy Appli-

cations

The target audience of the journal includes academicians, spe-
cialists, researchers and professionals who are working and 
interested in the field of electrical power and energy systems.

EDITORIAL AND PUBLICATION PROCESS
The editorial and publication processes of the journal are shaped 
in accordance with the guidelines of the Institute of Electrical 
and Electronics Engineers (IEEE), the World Commission on 
the Ethics of Scientific Knowledge and Technology (COMEST), 
Council of Science Editors (CSE), Committee on Publication Eth-
ics (COPE), European Association of Science Editors (EASE), and 
National Information Standards Organization (NISO). The jour-
nal is in conformity with the Principles of Transparency and Best 
Practice in Scholarly Publishing (doaj.org/bestpractice).
 
Originality, high scientific quality, and citation potential are 
the most important criteria for a manuscript to be accepted 
for publication. Manuscripts submitted for evaluation should 
not have been previously presented or already published in an 
electronic or printed medium. The journal should be informed 
of manuscripts that have been submitted to another journal 
for evaluation and rejected for publication. The submission of 
previous reviewer reports will expedite the evaluation process. 
Manuscripts that have been presented in a meeting should be 
submitted with detailed information on the organization, in-
cluding the name, date, and location of the organization.
 
PEER REVIEW PROCESS
Manuscripts submitted to TEPES will go through a double-blind 
peer-review process. Each submission will be reviewed by at 
least two external, independent peer reviewers who are experts 
in their fields in order to ensure an unbiased evaluation process. 
The editorial board will invite an external and independent edi-
tor to manage the evaluation processes of manuscripts submit-
ted by editors or by the editorial board members of the journal. 
The Editor in Chief is the final authority in the decision-making 
process for all submissions.
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ETHICAL CONSIDERATIONS
The authors are expected to submit researches that comply 
with the general ethical principles which include; scientific in-
tegrity, collegiality, data integrity, institutional integrity and so-
cial responsibility.

Plagiarism and Ethical Misconduct
Turkish Journal of Electrical Power and Energy Systems is ex-
tremely sensitive about plagiarism. All submissions are screened 
by a similarity detection software (iThenticate by CrossCheck) 
at any point during the peer-review and/or production process. 

When you are discussing others' (or your own) previous work, 
please make sure that you cite the material correctly in every 
instance. 

Authors are strongly recommended to avoid any form plagia-
rism and ethical misconduct that are exemplified below.

Self- plagiarism (text-recycling): Overlapping sections or sen-
tences with the author’s previous publications without citing 
them. Even if you are the author of the phrases or sentences, 
the text should not have unacceptable similarity with the previ-
ously published data.

Salami slicing: Using the same data of a research into several 
different articles. Reporting the same hypotheses, population, 
and methods of a study is into different papers is not accept-
able.

Data Fabrication: It is the addition of data that never occurred 
during the gathering of data or the experiments. Results and 
their interpretation must be based on the complete data sets 
and reported accordingly.

Data Manipulation/Falsification: It means manipulating re-
search data with the intention of giving a false impression. This 
includes manipulating images (e.g. micrographs, gels, radiolog-
ical images), removing outliers or ‘inconvenient’ results, chang-
ing data points, etc…

In the event of alleged or suspected research misconduct, e.g., 
plagiarism, citation manipulation, and data falsification/fabri-
cation, the Editorial Board will follow and act according to COPE 
flowcharts.

AUTHORSHIP
Being an author of a scientific article mainly indicates a person 
who has a significant contribution to the article and shares the 

responsibility and accountability of that article. To be defined as 
an author of a scientific article, researchers should fulfil below 
criteria:

•	 Making a significant contribution to the work in all or some 
of the following phases: Research conception or design, ac-
quisition of data, analysis and interpretation.

•	 Drafting, writing or revising the manuscript
•	 Agreeing on the final version of the manuscript and the 

journal that it will be submitted
•	 Taking responsibility and accountability of the content of 

the article

Outside the above-mentioned authorship criteria, any other 
form of specific contribution should be stated in the Acknowl-
edgement section.

In addition to being accountable for the parts of the work he/
she has done, an author should be able to identify which co-au-
thors are responsible for specific other parts of the work. In ad-
dition, authors should have confidence in the integrity of the 
contributions of their co-authors.

If an article is written by more than one person, one of the 
co-authors should be chosen as the corresponding author for 
handling all the correspondences regarding the article. Before 
submission, all authors should agree on the order of the au-
thors and provide their current affiliations and contact details. 
Corresponding author is responsible for ensuring the correct-
ness of these information.

TEPES requires corresponding authors to submit a signed and 
scanned version of the Copyright Agreement and Acknowl-
edgement of Authorship form (available for download www.
tepesjournal.org) during the initial submission process to act 
appropriately on authorship rights and to prevent ghost or 
honorary authorship. If the editorial board suspects a case of 
“gift authorship,” the submission will be rejected without fur-
ther review. As part of the submission of the manuscript, the 
corresponding author should also send a short statement de-
claring that he/she accepts to undertake all the responsibility 
for authorship during the submission and review stages of the 
manuscript.

CHANGE OF AUTHORSHIP

TEPES reviews the authorship according to the author’s decla-
ration in the Title Page, thus it is the authors responsibility to 
send the final order of the complete author names. Requests in 
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the change of authorship (e.g. removal/addition of the authors, 
change in the order etc) after submission are subject to editorial 
approval. Editorial Board will investigate this kind of cases and 
act following COPE flowcharts. 

Change of authorship requests should be submitted to the Ed-
itorial Office with an official letter stating the reasons of the 
change. The letter must be signed by all authors and include 
their approval on the change in authorship. If the request is ap-
proved by the Editorial Board, authors need to submit a new 
Copyright Agreement Form according to the final author list.
 
DECLARATION OF INTEREST
TEPES requires and encourages the authors and the individuals 
involved in the evaluation process of submitted manuscripts to 
disclose any existing or potential conflicts of interests, includ-
ing financial, consultant, and institutional, that might lead to 
potential bias or a conflict of interest. Any financial grants or 
other support received for a submitted study from individuals 
or institutions should be disclosed to the Editorial Board. Cases 
of a potential conflict of interest of the editors, authors, or re-
viewers are resolved by the journal’s Editorial Board within the 
scope of COPE guidelines. 

APPEAL AND COMPLAINT
The Editorial Board of the journal handles all appeal and com-
plaint cases within the scope of COPE guidelines. In such cas-
es, authors should get in direct contact with the editorial of-
fice regarding their appeals and complaints. When needed, an 
ombudsperson may be assigned to resolve claims that cannot 
be resolved internally. The Editor in Chief is the final authority 
in the decision-making process for all appeals and complaints.
 
COPYRIGHT AND LICENSE
TEPES requires each submission to be accompanied by a Cop-
yright Agreement and Acknowledgement of Authorship form 
(available for download www.tepesjournal.org). By signing this 
form, authors retain the copyright of their work and agree that 
the article, if accepted for publication by the Turkish Journal of 
Electrical Power and Energy Systems will be licensed under a 
Creative Commons Attribution-NonCommercial 4.0 Interna-
tional License. This license permits third parties to share and 
adapt the content by giving the appropriate credit to the origi-
nal work. Using the content for commercial purposes is not al-
lowed and subject to editorial approval.

When using previously published content, including figures, ta-
bles, or any other material in both print and electronic formats, 
authors must obtain permission from the copyright holder. Le-

gal, financial and criminal liabilities in this regard belong to the 
author(s).

DISCLAIMER
Statements or opinions expressed in the manuscripts published 
in TEPES reflect the views of the author(s) and not the opinions 
of the editors, the editorial board, or the publisher; the editors, 
the editorial board, and the publisher disclaim any responsibility 
or liability for such materials. The final responsibility regarding 
the published content rests with the authors.
 
MANUSCRIPT PREPARATION
Manuscripts can only be submitted through the journal’s on-
line manuscript submission and evaluation system, available 
at www.tepesjournal.org. Manuscripts submitted via any other 
medium and submissions by anyone other than one of the au-
thors will not be evaluated.
 
Manuscripts submitted to the journal will first go through a 
technical evaluation process where the editorial office staff will 
ensure that the manuscript has been prepared and submitted 
in accordance with the journal’s guidelines. Submissions that 
do not conform to the journal’s guidelines will be returned to 
the submitting author with technical correction requests.
 
Authors are required to submit the Copyright Agreement and 
Acknowledgement of Authorship Form during initial submission. 
The form is available for download at www.tepesjournal.org. 

Preparation of the Manuscript
Title page: A separate title page should be submitted with all 
submissions and this page should include:

· 	 The full title of the manuscript as well as a short title (run-
ning head) of no more than 50 characters,

· 	 Name(s), affiliations, highest academic degree(s), and OR-
CID IDs of the author(s),

· 	 Grant information and detailed information on the other 
sources of support,

· 	 Name, address, telephone (including the mobile phone 
number), and email address of the corresponding author,

· 	 Acknowledgment of the individuals who contributed to the 
preparation of the manuscript but who do not fulfill the au-
thorship criteria.

Abstract: An abstract should be submitted with all submissions 
except for Letters to the Editor. The abstract of articles should 
be structured without subheadings. Please check Table 1 below 
for word count specifications.

TURKISH JOURNAL OF 
ELECTRICAL POWER 
AND ENERGY SYSTEMS

TEPES



Keywords: Each submission must be accompanied by a mini-
mum of three to a maximum of five keywords for subject index-
ing at the end of the abstract. The keywords should be listed in 
full without abbreviations. 

Manuscript Types
Research Articles: This is the most important type of article 
since it provides new information based on original research. 
Acceptance of original papers will be based upon the originality 
and importance of the investigation. The main text of original 
articles should be structured with Introduction, Methods, Re-
sults, and Discussion subheadings. Please check Table 1 for the 
limitations for Original Articles.

Statistical analysis to support conclusions is usually necessary. 
Statistical analyses must be conducted in accordance with in-
ternational statistical reporting standards. Information on sta-
tistical analyses should be provided with a separate subhead-
ing under the Materials and Methods section and the statistical 
software that was used during the process must be specified.
 
Units should be prepared in accordance with the International 
System of Units (SI).
 
Editorial Comments: Invited brief editorial comments on select-
ed articles are published in TEPES. Editorials should not be longer 
than 1000 words excluding references. Editorial comments aim 
to provide a brief critical commentary by reviewers with exper-
tise or with high reputation in the topic of the research article 
published in the journal. Authors are selected and invited by the 
journal to provide such comments. Abstract, Keywords, and Ta-
bles, Figures, Images, and other media are not included.
 
Review Articles: Reviews prepared by authors who have exten-
sive knowledge on a particular field and whose scientific back-
ground has been translated into a high volume of publications 
with a high citation potential are welcomed. These authors may 
even be invited by the journal. Reviews should describe, discuss, 
and evaluate the current level of knowledge of a topic in clinical 
practice and should guide future studies. The subheadings of the 
review articles should be planned by the authors. However, each 
review article should include an “Introduction” and a “Conclusion” 
section. Please check Table 1 for the limitations for Review Articles.
  
Letters to the Editor: This type of manuscript discusses impor-
tant parts, overlooked aspects, or lacking parts of a previously 
published article. Articles on subjects within the scope of the 
journal that might attract the readers’ attention, particularly 
educative cases, may also be submitted in the form of a “Letter 

to the Editor.” Readers can also present their comments on the 
published manuscripts in the form of a “Letter to the Editor.” Ab-
stract, Keywords, and Tables, Figures, Images, and other media 
should not be included. The text should be unstructured. The 
manuscript that is being commented on must be properly cited 
within this manuscript.
 

Table 1. Limitations for each manuscript type

Type of 
manuscript 

Word 
limit 

Abstract 
word limit 

Reference 
limit 

Table 
limit 

Figure 
limit

Research 
Article

4000 250 35 6 5 or total of 
10 images

Review 
Article

5000 250 50 6 10 or total of 
15 images

Letter to 
the Editor

500 No 
abstract

5 No 
tables

No media

 
Tables
Tables should be included in the main document, presented 
after the reference list, and they should be numbered consec-
utively in the order they are referred to within the main text. 
A descriptive title must be placed above the tables. Abbrevia-
tions used in the tables should be defined below the tables by 
footnotes (even if they are defined within the main text). Ta-
bles should be created using the “insert table” command of the 
word processing software and they should be arranged clearly 
to provide easy reading. Data presented in the tables should 
not be a repetition of the data presented within the main text 
but should be supporting the main text.
 
Figures and Figure Legends
Figures, graphics, and photographs should be submitted as 
separate files (in TIFF or JPEG format) through the submission 
system. The files should not be embedded in a Word document 
or the main document. When there are figure subunits, the sub-
units should not be merged to form a single image. Each sub-
unit should be submitted separately through the submission 
system. Images should not be labeled (a, b, c, etc.) to indicate 
figure subunits. Thick and thin arrows, arrowheads, stars, aster-
isks, and similar marks can be used on the images to support 
figure legends. Like the rest of the submission, the figures too 
should be blind. Any information within the images that may 
indicate an individual or institution should be blinded. The mini-
mum resolution of each submitted figure should be 300 DPI. To 
prevent delays in the evaluation process, all submitted figures 
should be clear in resolution and large in size (minimum dimen-
sions: 100 × 100 mm). Figure legends should be listed at the end 
of the main document.
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Equations
The equations must be stated separated from the text by a 
blank line. They should be numbered consecutively in parenthe-
sis at the right side of the equation. Symbols and variables as 
well as in the main text should be written in italics while vectors 
and matrices should be written in bold type.

All references, tables, and figures should be referred to within 
the main text, and they should be numbered consecutively in 
the order they are referred to within the main text.
 
Limitations, drawbacks, and the shortcomings of original arti-
cles should be mentioned in the Discussion section before the 
conclusion paragraph.
 
References
While citing publications, preference should be given to the lat-
est, most up-to-date publications. Authors are responsible for the 
accuracy of references. Both in-text citations and the references 
must be prepared according to IEEE Citation Style. In the main 
text of the manuscript, references should be cited using Arabic 
numbers in square brackets. The reference styles for different 
types of publications are presented in the following examples.
 
Journal Article: H. Ayasso and A. Mohammad-Djafari, "Joint NDT 
Image Restoration and Segmentation Using Gauss–Markov–Potts 
Prior Models and Variational Bayesian Computation," IEEE Trans-
actions on Image Processing, vol. 19, no. 9, pp. 2265-77, 2010.

Book Chapter: A. Rezi and M. Allam, "Techniques in array pro-
cessing by means of transformations" in Control and Dynamic 
Systems, Vol. 69, Multidemsional Systems, C. T. Leondes, Ed. 
San Diego: Academic Press, 1995, pp. 133-180.

Book with a Single Author: W.-K. Chen, Linear Networks and 
Systems. Belmont, CA: Wadsworth, 1993, pp. 123-135.

Conference Proceedings: L. Liu and H. Miao, "A specification 
based approach to testing polymorphic attributes," in Formal 
Methods and Software Engineering: Proc. of the 6th Int. Conf. 
on Formal Engineering Methods, ICFEM 2004, Seattle, WA, USA, 
November 8-12, 2004, J. Davies, W. Schulte, M. Barnett, Eds. 
Berlin: Springer, 2004. pp. 306-19.

Report: K. E. Elliott and C.M. Greene, "A local adaptive protocol," 
Argonne National Laboratory, Argonne, France, Tech. Rep. 916-
1010-BB, 1997.

Thesis: M. W. Dixon, "Application of neural networks to solve 
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ABSTRACT

Many countries in Sub-Saharan Africa (SSA) suffer from the lack of access to electricity due to poverty and a dispersed population. Due to the solar power 
potential in this region, solar-powered microgrids were examined in this study as a way to supply affordable electricity to the rural population in SSA. Using 
HOMER Pro as the microgrid optimization tool, a microgrid designed to supply electricity in Burkina Faso was simulated. With one of the cheapest electricity 
tariffs in SSA ($0.240/kWh), Burkina Faso was selected to ensure that the simulation results can serve as a proof-of-concept for all of the Sub-Saharan countries. 
Factors like solar panel output degradation and dusting, unexpected component failure, and linearity of the load profile were assessed to determine the lowest-
cost and highest-cost results for the simulated microgrid. The performed simulations showed that even without a connection to the main grid, a solar-powered 
microgrid can be easily profitable while supplying electricity at below the average national tariff, with almost no expected power outages. This paper proves 
that microgrids with only solar panels as a power source remain a viable option to provide cheap electricity to the impoverished rural regions in SSA, even with 
almost no component maintenance.

Index Terms—Cost of electricity, electricity access, HOMER pro, microgrid, solar power, Sub-Saharan Africa. 

I. INTRODUCTION
A microgrid is an autonomous energy system that supplies electricity 
to a region by using several power generation methods. Microgrids 
can function independently; if they are connected to the main grid, 
they can isolate themselves in case of an emergency. A microgrid 
that maintains no connection to the main grid is called an islanded 
microgrid. Islanded microgrids are principally used for providing 
electricity to isolated villages or outlying regions. Generally, connect-
ing faraway places to the main grid is extremely costly; therefore, a 
microgrid remains a preferable option. In an islanded configuration, 
the power generation must be adequate at all times to constantly 
supply the microgrid’s sensitive loads, in accordance with IEEE Std 
1547.4-2011 [1]. For this reason, batteries are used to continuously 
provide electricity when power generation becomes insufficient [2].

For African countries that have large rural regions suffering from 
poverty, and have no working national grids to supply them with 
electricity, islanded microgrids become the sole option. The 
World Bank SE4ALL database’s rural population density data are 
critically valuable in this regard. The data suggest that there are 

more isolated rural populations in Africa than in the rest of the 
world [3]. Furthermore, most of the countries in Africa are pov-
erty-stricken. According to the World Bank’s World Development 
Indicator report in 2017, the share of the population that lives in 
extreme poverty (income of <$1.9 per day) is slightly below 50% in 
Sub-Saharan Africa (SSA) [3]. The statistics show that SSA, in par-
ticular, has exhibited signs of extreme poverty, which explains the 
region’s lack of electricity access. Electricity access in SSA is only 
30.5% overall. Rural access is worse: 14.2% [4]. The result is higher 
electricity tariffs in SSA, which ranges between $0.200/kWh and 
$0.500/kWh, depending on the country [5]. The worldwide elec-
tricity tariff average is $0.134/kWh in comparison [6].

This paper aims to prove that providing cheaper electricity in SSA is 
possible with photovoltaic (PV)-based islanded microgrids. For this 
reason, a PV-based microgrid was planned in Burkina Faso, owing to 
the cheaper overall electricity tariff than other Sub-Saharan coun-
tries [7]. Being able to provide cheaper electricity in Burkina Faso 
ensures that this study can be applicable to most, if not all, of the 
Sub-Saharan countries in terms of providing cheaper electricity to 
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the population. The simulation was performed using HOMER Pro, a 
microgrid design and optimization tool.

The rest of the paper includes the following:

•	 Location selection for the microgrid project with detailed justifi-
cation for the selection.

•	 Explanation of the statistical analysis used by HOMER Pro to 
simulate the microgrid.

•	 Comprehensive analysis for component selection.
•	 Presentation of the results.
•	 Information about the limitations that affected the results.
•	 Comments about the findings in this paper and their implications.

II. METHODS
A. Location Selection
Burkina Faso’s low electrification rates demonstrate the need for a 
microgrid project. With a combined population of 19.2 million [3], 
Burkina Faso’s urban population makes up 29% of the total popula-
tion, and only 58% of that urban population has electricity access. 
Moreover, only 3% of the rural population has electricity access. 
Note that 70% of Burkina Faso’s population lives in rural areas [8]. 
In addition, Burkina Faso’s inability to seamlessly supply electric-
ity to regions under the national grid reinforces the need for the 
project [9].

Province selection was influenced by several factors. The solar irra-
diation map of Burkina Faso in [7] was used to determine candidate 
regions where a solar-powered microgrid could provide maximum 
power. The referenced map revealed that the country’s Northeast 
region is a suitable region for the microgrid. The next step was 
to take the population distribution for the suitable regions into 
account, to identify the most suitable location for the microgrid. 

The grid also needs to be relatively close to the main grid to enable 
a possible future main grid connection. After comparing the popu-
lation centers and grid distribution with the solar irradiation map, 
the Namentenga province was selected [7]. With a population of 
476 262, this province is relatively populous. Notably, 95.3% of the 
Namentenga province’s population lives in rural areas, where only 
1% of the population on average has access to electricity [10]. The 
exact location of the microgrid project is 13°35.9’N, 0°16.5’W, which 
lies inside the Department of Yalgo.

B. Statistical Analysis Using HOMER Pro
For the designed microgrid, multiple simulations for multiple sce-
narios are performed to establish the most economical solution. The 
project location is used to get the monthly average solar irradiance 
and clearness index data from HOMER Pro. Clearness index (KT) is 
defined as the ratio of the solar radiation that reaches the Earth’s 
surface. This value is between 0 and 1. The clearness index is closer 
to 1 on a sunny and clear day, whereas it gets closer to 0 in cloudy 
conditions. The calculation of the clearness index is performed with 
(1), where Have is the monthly average radiation on the horizontal 
surface of the Earth and Ho,ave is the extraterrestrial horizontal radia-
tion. In other words, Ho,ave is the radiation on a horizontal surface at 
the top of the Earth’s atmosphere [11];

	 K H
HT
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o ave
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	 (1)

With a given Have, HOMER Pro can find KT after calculating Ho,ave, 
which involves several steps. The initial step is to calculate the inten-
sity of solar radiation at the top of the Earth’s atmosphere (Gon) (2);
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Gsc is the solar constant (1.367 kW/m2), whereas n is the day  
of the year. The next step is to obtain the extraterrestrial radiation  
on the horizontal surface (Go) which changes with the zenith  
angle (θz). The zenith angle represents the angle between the sun’s 
rays and the vertical. Go can be calculated using (3) and (4):

	 G Go on z� � cos� 	 (3)

	 cos� � � � � �z � � � � �cos cos cos sin sin 	 (4)

For (4), ϕ is the latitude, δ is the solar declination, and ɷ is the hour 
angle. The solar declination itself is calculated using (5):
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A further step involves finding Ho, the average daily extraterrestrial 
radiation per square meter. Integrating (3) from sunrise to sunset will 
give Ho. The result of the integration is given in (6):
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Main Points

•	 HOMER Pro is used as the microgrid optimization tool to 
determine the most affordable solutions for the simulated 
microgrid in Burkina Faso. The pros and cons of HOMER Pro 
are discussed.

•	 The effects of maintenance and external factors such as 
solar panel dusting are evaluated by simulating different 
lifetime expectations for each component in the microgrid 
and different derating factor possibilities for the solar 
panels.

•	 The importance of load profile linearization is discussed by 
proving that a more linearized load profile results in a lower 
cost of electricity (COE).

•	 It is shown that even with almost no component mainte-
nance, the PV-based microgrid solution offers a COE that can 
be profitable while setting an electricity tariff that is lower 
than Burkina Faso’s average tariff.

•	 A future connection to the main grid can lower the microgrid’s 
COE further by selling the excess energy that is wasted while 
the microgrid is in islanded configuration.
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ɷs is the sunset hour angle, which can be calculated using (7):

	 cos tan tan� � �s � � � 	 (7)

Finally, Ho,ave can be calculated (8). N is the number of days in the 
month:

	
H

H

No ave
n

N
o

, � �� 1
	 (8)

Using the provided equations, the monthly average solar global 
horizontal irradiance (GHI) data for Namentenga are presented in  
Table I.

One of HOMER Pro’s most important features is its ability to conduct 
accurate economic analysis. Attaining accurate results requires data 
about several economic properties of the region. These properties 
include the country’s inflation rate and nominal discount rate. The 
nominal discount rate is the interest rate without the effects of infla-
tion. Both inflation and nominal discount rates are used to calculate 
the cost increase, caused by inflation, of any materials that need to 
be replaced. Maintenance costs are equally affected by inflation: cal-
culating the maintenance costs of a project with a lifetime of multi-
ple years cannot be done correctly without considering the effects of 
inflation in the region. Over the last 18 years, Burkina Faso’s average 
inflation rate (f) has been 2.3%, whereas the nominal discount rate 
(i’) is 5.14% [12, 13]. These rates are used to determine the real dis-
count rate (real interest rate). The real discount rate (i) is the interest 
rate used to remove the effect of inflation, which is:

	 i i f
f

�
�
�
�

1
	 (9)

Using (9), the real discount rate is calculated to be 2.78%.

HOMER Pro can also calculate the COE and total net present cost 
(NPC). The COE is the average cost of producing 1 kWh of electrical 
energy by the system. NPC represents the entire project’s cost for the 
full length of its determined lifetime. For COE and NPC, the goal is to 
keep those costs as low as possible. Using (10), COE can be calculated:

	 COE Cyear
E AC E DC

�
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	 (10)

Cyear is the total annualized cost of the microgrid, whereas E(AC) and 
E(DC) are the yearly spent AC and DC loads, respectively.

Determining the NPC requires calculating the capital recovery factor 
(CRF), which is a ratio used to calculate the present value of the cash 
flow. The present value of a payment changes in time. This change 
is dependent on the real discount rate and the amount of time, as is 
apparent with the CRF’s following formula (11):
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Note that N is the project lifetime, which is 25 years for the project in 
this paper. Using CRF, NPC can be calculated as (12):

	 NPC Cyear
CRF

= 	 (12)

After the project lifetime is reached, every component is sold as sal-
vage to recuperate some of the installation costs. The salvage value 
is calculated using (13):

	 S C R
Rrep
rem
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� � 	 (13)

Crep is the replacement cost, Rrem is the remaining lifetime at the end 
of the project lifetime, and Rcomp is the component lifetime, which is:

	 R R N Rrem comp rep� � �� � 	 (14)

Rrep is the replacement cost duration, calculated by (15):
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TABLE I 
SOLAR GLOBAL HORIZONTAL IRRADIANCE (GHI) DATA FOR NAMENTENGA REGION

Month KT Have (kWh/m2/day) Month KT Have (kWh/m2/day)

January 0.638 5.360 July 0.573 6.050

February 0.680 6.260 August 0.539 5.670

March 0.666 6.690 September 0.573 5.830

April 0.650 6.860 October 0.625 5.880

May 0.638 6.780 November 0.648 5.530

June 0.613 6.470 December 0.632 5.130

KT, clearness index; Have, monthly average radiation.



Merev. PV-Based Islanded Microgrid Feasibility in Africa

6362

TEPES Vol 1., Issue. 2, 60-68, 2021

Note that INT () gives the integer value of the equation inside the 
parentheses.

One can also limit the annual capacity shortage to make sure that 
the project sufficiently provides consistent electricity to its users. 
HOMER Pro assumes an annual capacity shortage of 0% by default. 
However, this can result in situations where a specific load may 
require excessive energy production to ensure no capacity shortage 
during peak loads. The result is wasted energy and an increase in the 
COE and NPC if the microgrid is islanded. After several preliminary 
simulations, an annual capacity shortage of 2% was allowed in the 
system.

Furthermore, the project’s load profile needs to be determined. The 
software has certain artificial load profiles and multiple load profiles 
for several locations within the United States. These load profiles 
can aid a project even if it is outside the United States by only list-
ing load profiles that match the climate of the project’s location. 
Because electrification of a rural region is desired for the microgrid 
design, a residential load profile can be assumed. However, the load 
profile cannot be expected to remain the same throughout the proj-
ect’s 25-year lifespan. Once the electrification is achieved and busi-
nesses start to establish in the area, the load profile will turn into a 
more distributed one. The reason is that the electricity usage will be 
more varied instead of electricity used primarily for illumination at 
night and refrigeration. Investigating this factor requires one simula-
tion each for two different load profiles (residential and community, 
Fig. 1 and Fig. 2). From the results, a two-step microgrid installation 
was planned. The first step was assumed for a complete residential 
load profile, serving a small fraction of the planned amount, owing 

to the less linear nature of the load profile increasing the COE. The 
second step was assumed for a community load profile. To find the 
best annual average load for each step, the scale of the project for 
each load profile needs to be examined. For this reason, a load that 
satisfies the needs of between 500 and 5000 people was considered, 
with an increment of 500 people. Yearly average energy consump-
tion per capita in Burkina Faso is 76 kWh [14], which is equal to 
208.22 Wh/day. Thus, the average annual load in the simulation is in 
the range of 104.11–1041.1 kWh/day. Note that with a community 
load profile, average energy consumption per capita in the region 
might increase owing to increased economic activity.

C. Component Selection
The required components for the microgrid are solar panels for power 
generation, maximum power-point (MPP) tracking (MPPT) charge 
controllers to always output maximum power at a stable DC bus 
voltage [15], batteries for energy storage, and inverters for DC–AC 
conversion. There are several considerations to be made for compo-
nent selection:

•	 DC bus voltage needs to be at the DC voltage range of the 
inverter. In addition, most MPPT charge controllers depend 
upon solar panel output voltage to be above the battery volt-
age to function. Thus, DC bus voltage needs to be selected in 
accordance with this fact.

•	 Battery nominal voltage needs to be at the required DC bus 
voltage. The string size can be altered to accommodate this 
specification.

•	 The selected MPPT charge controller needs to be able to charge 
the batteries at the specified DC bus voltage. It also needs to 

Fig. 1. Residential daily and seasonal load profile.

Fig. 2. Community daily and seasonal load profile.
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be rated at appropriate maximum PV short circuit current (Isc) 
and open circuit voltage (Voc) values. A solar panel with a higher 
short circuit current can damage the controller. The datasheet 
for the MPPT controller needs to be examined for more poten-
tial restrictions.

For solar panels, LG Electronics 365Q1C-A5 was selected for its high 
efficiency (21%). According to the panel’s datasheet, its maximum 
power (Pmax) is 365 W, Voc is 42.8 V, and Isc is 10.8 A. Moreover, the 
output of the solar panel is expected to decline by 2% during the 
first year. Afterward, an annual output decline of 0.4% is expected 
[16]. Based on this information, the average solar panel output 
after 25 years is 93.46% of its initial performance. This factor is 
included in the simulation as the derating factor (fPV) of the solar 
panels.

The MPP voltage of the solar panels is 36.7 V [16]. This necessitates 
a DC bus voltage lower than this value to make sure that the MPPT 
charge controller is functional. Because most MPPT charge control-
lers support battery voltages of 12–24–36–48 V, a 12 V DC bus volt-
age is selected for this project to ensure the continuous operation of 
MPPT charge controllers.

For energy storage, EnerSys PowerSafe SBS 900 batteries were used. 
They have a nominal voltage of 12 V and a nominal capacity of 
12.1 kWh. The string size does not need to be altered because both 
the DC bus voltage and the battery nominal voltage are the same. 
These batteries also need to undergo maintenance every six months. 
This requirement was factored into the simulation.

The selected MPPT charge controller is Victron BlueSolar MPPT 
100/50. Its rated charge current is 50 A; therefore, it is capable of 
providing 700 W of nominal power at 12 V battery voltage. Its speci-
fied maximum Voc and Isc values are 100 V and 60 A, respectively, 
which satisfy the solar panels’ specifications. For this system, each 
MPPT charge controller can handle two solar panels connected 
in series. Even though the combined Pmax is 730 W, the simulation 
assumes 93.46% of maximum solar panel output, because of the 
output power degradation mentioned earlier. For this reason, the 
actual Pmax is slightly above 682 W, which the MPPT charge controller 
can provide [17].

Studer Xtender XTH 3000-12 was selected for DC–AC conver-
sion. Its nominal battery voltage is 12 V and it has an input voltage 

range  between 9.5 and 17 V. It can supply continuous power of 
2500 VA [18].

Each selected component needs to be replaced after several years, 
owing to aging. Each component has a certain lifetime specified 
both in the respective datasheets and in the HOMER Pro software. 
However, the need for replacement can occur earlier than expected 
because of suboptimal storage conditions and lack of maintenance. 
For this reason, several lifetime possibilities were specified for each 
component. A lack of maintenance can also lower solar panel power 
output owing to dusting, especially in Africa [19]. This reduction var-
ies between 4% and 32%, according to results in [20–29]. To study 
the most undesirable possible outcome, the power output reduc-
tion of 32% was examined with another derating factor: 63.55% 
(32% less than the average output of the solar panels throughout 
their 25-year lifespan). The considered lifetimes, alongside the capi-
tal, and operation-and-maintenance (O&M) costs are presented in  
Table II. Multiple technical reports and papers were used to decide 
the capital and O&M costs [30–34].

III. RESULTS
Owing to the many sensitivity issues due to the components’ lifetime 
considerations and a change in the fPV of the solar panels, results are 
provided in steps. These steps are as follows:

•	 The best case scenario for each average annual load is pre-
sented. The load with best results is selected.

•	 For the selected load, the effect of components’ lifetime is pro-
vided. fPV is 93.46% for the given results.

•	 The effect of dusting on solar panels owing to lack of mainte-
nance is then examined using fPV as another sensitivity issue.

A. Simulation Results for the Residential Load Profile
The results for the residential load profile with the best replacement 
requirements for each component are presented in Table III. Load 
#3 has the lowest COE of $0.146/kWh. Considering the fact that the 
average COE in Burkina Faso is $0.194/kWh, this result is definitely 
acceptable as it allows setting a tariff much lower than Burkina Faso’s 
average ($0.240/kWh) [7]. Lowering electricity tariffs in Burkina Faso 
is essential, considering the prevalent poverty [3]. In addition, load 
#3 also provides the best autonomy among all other options. Note 
that autonomy refers to the amount of time that the microgrid can 
be sustained by the power accumulated in the batteries, in case of a 
blackout or during maintenance operations.

TABLE II 
COMPONENTS SELECTED FOR THE MICROGRID AND THEIR ASSOCIATED COSTS

Component Type Component Name Cost ($/unit)
Simulated Lifetime 

(years) O&M Costs ($/unit-year)

Solar Panel LG 365Q1C-A5 380.00 25, 20 10.95

MPPT Charge Controller Victron BlueSolar MPPT 100/50 343.00 20, 15 Included in solar panel O&M costs

Battery EnerSys PowerSafe SBS 900 1440.00 15, 10 25.00

Inverter Studer Xtender XTH 3000-12 901.00 10, 5 100.00
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TABLE III 
BEST RESULTS FOR EACH ANNUAL AVERAGE LOAD (RESIDENTIAL LOAD PROFILE)

#
Annual Average Load 

(kWh/day) NPC ($) COE ($/kWh)
Operating Cost  

($/year) Initial Capital ($)
Autonomy 

(hours)
Excess Electricity 

(%)

1 104.11 99 240 0.148 2 497 54 650 43.0 10.40

2 208.22 196 958 0.147 4 889 109 667 44.0 10.80

3 312.33 295 067 0.146 7 040 169 363 49.5 11.80

4 416.44 396 499 0.148 9 863 220 390 42.5 12.50

5 520.55 494 683 0.147 12 158 277 597 45.4 11.70

6 624.66 595 689 0.148 15 021 327 479 39.4 13.40

7 728.77 701 454 0.150 17 921 381 473 39.9 11.90

8 832.88 793 141 0.148 19 624 442 739 41.8 14.00

9 936.99 891 060 0.147 21 977 498 642 41.1 14.90

10 1041.1 995 415 0.148 25 197 545 503 39.5 13.10

NPC, net present cost; COE, cost of electricity.

TABLE IV 
EFFECT OF COMPONENTS’ LIFETIME FOR LOAD #3 (FPV = 93.46%)

#

Component Lifetime (years)

COE ($/kWh) NPC ($) Autonomy (hours) Excess Electricity (%)NInv NBat NPV NMPPT

3.1 10 10 20 10 0.176 354 746 40.4 12.10

3.2 10 15 20 10 0.169 341 742 48.9 11.80

3.3 10 10 25 10 0.169 339 684 40.4 12.10

3.4 10 15 25 10 0.162 325 889 45.0 11.70

3.5 5 10 20 10 0.190 383 676 41.7 12.40

3.6 5 15 20 10 0.183 368 215 44.3 12.90

3.7 5 10 25 10 0.184 370 756 43.0 12.00

3.8 5 15 25 10 0.175 352 123 50.2 11.90

3.9 10 10 20 20 0.160 322 700 37.8 14.10

3.10 10 15 20 20 0.154 310 102 49.5 11.80

3.11 10 10 25 20 0.153 307 133 37.2 15.00

3.12 10 15 25 20 0.146 295 067 49.5 11.80

3.13 5 10 20 20 0.176 354 418 43.0 12.00

3.14 5 15 20 20 0.167 336 082 47.6 12.30

3.15 5 10 25 20 0.167 336 463 37.8 15.20

3.16 5 15 25 20 0.159 320 511 46.9 11.70

NPC, net present cost; COE, cost of electricity.
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The effect of nonideal replacement requirements for load #3 is 
examined in Table IV. Even the worst scenario (load #3.5) has a COE 
($0.190/kWh) lower than Burkina Faso’s average COE. The worst 
possible dusting further increases the COE to $0.239/kWh, which 
leaves almost no room for profit without going above the electric-
ity tariff average in Burkina Faso. Note that this is the absolute 
worst possible result for load #3, owing to the lack of maintenance. 
Moreover, the solar panels’ lifetime typically ranges between 
25 and 40 years [35], which makes a COE of $0.239/kWh unlikely 
for this project.

B. Simulation Results for the Community Load Profile
After an increased economic activity during the day is achieved 
in the area, a more linearized load profile is expected. Owing to 
load profile linearization, the relative peak load is reduced, there-
fore costs are reduced as well, as shown in Table V. The results 
are achieved with the advertised lifetime of each component. The 
highest average annual load with the lowest COE of $0.136/kWh is 
load #19. A comparison between Tables III and V emphasizes the 
importance of load profile linearization: with a community load 
profile, a decrease in the COE, NPC, initial capital, and yearly oper-
ating costs are achieved in every considered annual average load. 
In addition, tariffs can be set even lower than what was possible 
with a residential load profile. Compared with load #3, though, 
the autonomy decreased from 49.5 hours to 41.1 hours, which can 
be alleviated by further battery acquisition, but with the caveat of 
increased COE. As a side note, it must be emphasized that even 
the COE for load #19 is higher than the worldwide average tariff 
($0.134/kWh). This is because of the excess electricity. Thus, the 
proximity of the main grid to the selected location was crucial 
owing to this problem: with a future integration to the main grid, 
excess electricity can be sold to the main grid, thereby reducing 
the overall COE for the microgrid itself.

Table VI shows the effect of different component lifetimes for load 
#19. The worst scenario is given in load #19.6. Even though load 
#19.5 is identical with load #19.6, with the exception of a worse bat-
tery lifetime (10 years), it has a lower COE. Owing to the fact that 
batteries can last longer in load #19.6, it is more sensible to invest 
more in them, increasing autonomy. However, the subsequent need 
for more inverters actually increased the COE of load #19.6, which is 
$0.179/kWh with no PV dusting and $0.221/kWh with PV dusting. 
The results in Table VI reinforce the fact that a PV-based microgrid 
project is feasible in Burkina Faso.

IV. DISCUSSION
Several limitations were present owing to the available information 
about Burkina Faso and the HOMER Pro software. These limitations 
are as follows:

•	 No credible information is available about land costs in Burkina 
Faso. This information is required for more accurate NPC 
calculation.

•	 Implementation of the derating factor (fPV) as a way for simu-
lating real-world operating conditions in HOMER Pro is limited 
because there is no way to input annual power output degrada-
tion for solar panels by setting different values for fPV for each 
year. Entering an fPV for the solar panels’ average 25-year output 
was the best available, albeit still flawed, solution for this limita-
tion. The flaw of this approach is apparent when NPV = 20 years, 
where the solar panels’ average output would be higher than 
93.46%, especially for the replacements. The simulation of solar 
panel dusting for this project was also simplistic, owing to the 
aforementioned limitation of the software.

•	 No credible information is available about load profiles in the 
rural regions of Burkina Faso, owing to the lack of electricity 
access in the country. More accurate results can be achieved 

TABLE V 
BEST RESULTS FOR EACH ANNUAL AVERAGE LOAD (COMMUNITY LOAD PROFILE)

#
Annual Average Load 

(kWh/day) NPC ($) COE ($/kWh)
Operating Cost  

($/year) Initial Capital ($)
Autonomy 

(hours)
Excess Electricity 

(%)

11 104.11 97 975 0.146 2 494 53 445 39.1 10.20

12 208.22 183 292 0.136 4 394 104 828 39.1 11.90

13 312.33 276 256 0.137 6 448 161 129 44.3 11.60

14 416.44 367 460 0.137 8 762 211 003 40.6 11.70

15 520.55 467 017 0.140 11 146 267 990 44.6 9.93

16 624.66 556 652 0.138 13 127 322 253 39.4 15.10

17 728.77 644 890 0.137 15 466 368 738 40.5 11.30

18 832.88 747 539 0.139 18 298 420 818 35.7 14.30

19 936.99 823 816 0.136 19 596 473 910 41.1 11.20

20 1041.1 918 480 0.137 21 679 531 397 41.5 12.20

NPC, net present cost; COE, cost of electricity.
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with a more location-specific load profile; however, the load 
profiles used for the project in this paper are accurate enough 
to base conclusions on.

•	 Lack of power flow analysis in HOMER Pro makes the optimi-
zation fairly simplistic: stability issues that typically arise with 
intermittent power generation cannot be simulated, although 
sudden increase in load can be taken into account by setting a 
day-to-day random variability of the load profile. Furthermore, 
line losses are also disregarded.

In conclusion, it was found that even without a grid connection, a 
PV-based microgrid remains a robust option for providing more 
affordable electricity to Burkina Faso, a country with a lower average 
electricity tariff than other SSA countries. Component maintenance 
was proven to be a crucial factor in making sure that the COE remains 
low throughout the microgrid’s operational lifetime. The linearity 
of the load profile was also shown to affect the results. However, a 
future main grid connection is required to use the more than 10% 
excess electricity generated in almost all of the loads in Tables III, IV, 
V, and VI. This would also decrease the COE, to a level lower than the 
worldwide average electricity tariff.
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ABSTRACT

Due to the increased penetration of renewable energy sources in the Electricity Distribution Systems, the idea of connecting a storage system to the distribution 
systems to provide stable electrical energy is becoming widespread. At this point, Battery Energy Storage Systems (BESS) have emerged as an important option. 
In this study, Mobile Battery Energy Storage System (MBESS), which have features such as providing island operation of the distribution system, responding to 
faults in a short time, and can be moved to desired areas and temporarily function as a buffer, have been introduced, and their effect on the distribution sys-
tem has been investigated. Various scenarios with different battery locations and different short circuit types are produced in the study, using the IEEE 13-bus 
test system. Simulation studies were carried out on the test system for different scenario types, and the effect of the MBESSs operating mode was examined.

Index Terms—Mobile battery energy storage systems, distribution systems, power loss, short circuit fault, voltage drop.

i. introduction
The increasing demand for energy day by day reveals that electricity 
generation facilities should be diversified. The intermittent energy 
problem in electricity networks, which arises due to the structure of 
Renewable Energy Systems (RES), is the subject of many new stud-
ies. Short-term and long-term analyses are being carried out for RES, 
which reveal the problem with energy stability. The areas of appli-
cation of Battery Energy Storage System (BESS), which have been 
become widespread recently are increasing, with the solutions they 
offer [1].

The smart grid concept was developed especially in the early years of 
the twenty-first century. Although countries differ in their smart grid 
systems, their goals for the grid are common. In the smart grid model, 
the RES and battery systems can be integrated into the network, and 
an island operation feature is provided in the network. Thus, it pro-
vides higher reliability. In case of a fault that may occur at any point 
of the network, the BESSs provide island mode operation, so that the 
effect of the fault can be reliably and quickly eliminated. It is impor-
tant to determine the appropriate locations for the BESSs to be used 
to improve the operating conditions of the electricity distribution 
network. In addition to the objectives such as ensuring continuity in 
system operation, reducing losses, and regulating the voltage profile, 

it is necessary to consider the many limitations such as the limits of 
current-carrying capacity, voltage limits, etc. There are many studies 
in the literature to solve these problems and optimize the systems, 
and to determine the location of BESSs and distributed generation 
units in the network [2].

Various Energy Management Systems (EMS) have been developed 
in studies considering the intermittent energy problem caused by 
RES, while designing distribution systems. The BESSs, which are of 
two types––fixed and mobile––play an important role at this point, 
because they have features such as improving the voltage quality 
in the network, providing reactive power support, reducing demand 
costs according to the density of the loads, and ensuring power bal-
ance. In addition to the fixed BESSs, Mobile Battery Energy Storage 
System (MBESS) have emerged as an option [3].

The aim of integrating MBESSs into an electricity distribution network 
is to store excess energy, to contribute to a constant power output, 
and to provide voltage support with reactive power compensation. 
To evaluate in terms of cost, the use of MBESSs is beneficial because 
the energy is provided from the battery when electricity is sold at high 
prices. In addition, MBESSs can be used for consumers who have a 
high power demand for a short time [4].
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It is becoming increasingly common for electricity generation units 
to be located close to loads. The RES, especially, provide a more 
efficient and reliable network structure. This network structure is 
called a micro-grid. The network structure, which has the feature 
of self-isolation in case of errors that may occur on the feeder side, 
stands out with its lower cost. The presence of intermittent energy 
in micro grids, high production–consumption imbalance between 
loads, and the difficulty of controlling this situation increase the use 
of MBESSs [5].

In the literature, methods have been proposed to enhance overall 
network performance by using BESSs, and the optimal placement, 
sizing, and operation of the storage units have been studied [6]. 
The effects of mobile battery systems in battery Electric Vehicles 
(EV) and plug-in hybrid EVs on the grid were examined in Wong [1]. 
Optimization has been achieved to solve problems, for instance, by 
reducing both the power loss and the voltage drop that will occur on 
the system when the battery system is recharged [1]. In the studies 
on MBESSs, various optimization methods have been used to obtain 
optimum results. The Monte Carlo simulation method was used in 
Abdeltawab and Mohamed [2] during the integration of MBESSs into 
the network. In Samara [3], using the particle swarm optimization 
method, the cost analysis of MBESSs on a 41-bus system was per-
formed. Considering the voltage drop and power loss constraints, a 
system that can work in harmony with the RES has been designed, 
thanks to the proposed EMS [3]. In Barra [4], an MBESSs with a capac-
ity of 480 kWh and an initial state of charge of 35% was used. Serving 
19 customers, the MBESS made an optimum profit of $327/day using 
the day-ahead forecasting method. In addition to the power loss and 
voltage drop, which should be considered during the integration of 
MBESSs into distribution systems, the optimum location, size, and 
time are important [7]. In Sarıkurt and Balıkçı [8], it was seen that 4% 
profit was obtained by integrating the MBESSs into the system at the 
optimum time. It is stated that the algorithm used in this study can 
be used in large-scale systems.

In Abdeltawab and Mohamed [2], the use of MBESSs is included 
when the faulty part of the network is isolated from the system and 
the energy demand is met by distributed generation units. The study 
focused on reliability analysis. In reliability analysis, the startup time 

after a fault and the capacity of the storage system are important 
parameters. It is also assumed that the distribution system is radial, 
that all switches are reliable, and that two faults do not occur at the 
same time. Moreover, when the MBESS reaches the fault location, 
the state of charge is accepted as 50% [2].

The MBESS is connected to different nodes in a simple distribution 
system in [5]. The effects of MBESSs on the system in case of three-
phase fault currents was simulated with the PSCAD/EMTDC program. 
Considering the test system with four buses, the effects of MBESSs 
on the system against short circuit faults that may occur in every bus 
were examined in terms of overcurrent protection [5].

In this study, the MBESSs have been integrated into the 13-bus test 
system so that analysis can be performed in a larger scale test system. 
MBESSs were connected to different suitable buses for determining 
the optimum location. Since power losses and voltage profiles are 
the most important parameters when designing EMS, the results of 
these two parameters obtained in case studies were evaluated in the 
study. In addition, by applying short circuits to different nodes, the 
behavior of the MBESSs in the system at the time of short circuit was 
monitored. Most studies in the literature focused on the effect of 
MBESSs on the energy management system, aiming to optimize the 
operational cost. In this study, the effect at the time of short circuit 
has been examined with dynamic analysis.

II. MBESS
In recent years, MBESSs are considered instead of fixed BESSs due to 
their mobility and easy access to the point of need. The biggest prob-
lems seen in BESSs are the high cost and low lifespan. Since small 
BESSs placed on different load busbars lead to costly undesirable 
quantities, it may be more advantageous to use a single, large BESSs 
instead of being placed in pieces. A large BESSs, where determina-
tion of the most suitable connection point is much more important, 
cannot support some parts of the system, especially when the topol-
ogy of the system is restructured. At this point, MBESSs, which can 
be transported to the desired area, are more useful than the fixed 
BESSs [3]. The MBESSs have many benefits, from the manufacturer 
to the consumer.

A. Benefits for Utility
•	 High power quality is provided due to the low voltage loss.
•	 Less power loss and thus high efficiency is achieved.
•	 When there is high demand, the need for grid power is reduced.
•	 Optimal usage of grid power is ensured.

B. Benefits for Consumers
•	 The high cost caused by the load imbalance is reduced.
•	 In case of faults, reliability is provided with fast intervention.
•	 The network can be operated in island operating mode.

C. Benefits for Society
•	 They provide ease of access to remote areas within the distribu-

tion network.
•	 Business efficiency can be increased by reducing interruptions 

due to faults.

Main Points

•	 The integration of Mobile Battery Energy Storage System 
(MBESS) into distribution systems has many advantages. 
However, parameters such as power loss, voltage drop and 
short circuit must be carefully examined during the integra-
tion of MBESSs.

•	 Optimum MBESSs positioning is very important, especially in 
short-circuit analysis. It is seen that the short-circuit current 
changes depending on the location of the MBESSs.

•	 Since short circuits in electrical distribution systems are 
instantaneous events, the effects of MBESSs on the current 
short circuit can be seen more clearly with transient analysis.

•	 Since loads in a distribution system can vary over time, time 
series analysis must be made.
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•	 Private individuals/companies enable the development of the 
free market structure with the operation of MBESSs.

•	 EVs are encouraged. Thus, a conscious society is formed in order 
to provide clean energy [8].

The MBESSs consist of two parts, the carrier vehicles and the storage 
systems, and are connected with the network by first using a DC/DC/
AC bidirectional converter. In addition, there is a DC/DC converter, 
which is a current-controlled Buck–Boost converter, and a control 
device in the EMS that regulates the power of the battery in charge/
discharge situations [3]. The MBESSs, whose general structure is 
described, can be seen in Fig. 1.

A simple equivalent circuit model of the battery is given in Fig. 2. 
The model, consisting of internal resistance and a resistor–capacitor 
block between open circuit voltage and terminal voltage, is used as 
the general battery model [9].

The idea of Vehicle for Grid (VfG) is becoming widespread. Compared 
to EVs and the Energy Storage System (ESS), the VfG increases net-
work reliability, is more environment friendly, and provides eco-
nomic gain to the distribution and production system. Structures 

with two operating systems, the Vehicle to Grid (V2G) and the Grid 
to Vehicle (G2V), are separated from the ESSs. The ability to operate 
in the optimum location and at the optimum time will increase the 
use of VfGs instead of EVs with external chargers. In an electricity 
network, the VfGs are MBESSs that provide economic gain in terms 
of generation and distribution units. They differ from fixed BESSs 
thanks to their mobile feature. This mobility provides advantages 
such as load shifting in the network, fast response in case of fault, 
and island operation [10].

The MBESSs, which are used to provide an island operation feature, 
can feed the isolated region in case of any fault in the network. The 
MBESSs act as a temporary buffer until distributed generation units 
provide energy support again. Some parameters of MBESSs are 
taken into consideration in long-term dynamic investigations. These 
are given in Equations 1, 2, and 3 [11]:

	 t k D
S

tup MBESS traff
MBESS

install_ � � 	 (1)

where tup MBESS_  represents the startup time of MBESSs after fault 
(h), ktraff  represents traffic condition factor, D represents distance 
between starting location and fault location (km), SMBESS  represents 
movement speed (km/h) and tinstall  represents installation time (h):

	 �
�

E t P t P t dt
t

t t
Dis Chr

c
Dis Chr� � � � � � � ��

�
�
�

�

� \ \� 	 (2)

where E represents the energy stored in the battery (MWh), PDis Chr\  
represents the charge\discharge power of the battery (MW), ηc  
represents the charge losses (%), and ∆t represents the time interval 
(hs):

	 SoC t
E t
Er

� � � � �
	 (3)

Fig. 2. Battery equivalent circuit model.

Fig. 1. Representative MBESS.
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where SoC t� �  represents the charge level of the battery at time t 
(%), E(t) represents the energy stored by MBESSs at time t (MWh), 
and Er  represents the storage capacity of the MBESSs (MWh) [11].

III. EFFECTS OF MBESS ON THE DISTRIBUTION NETWORK
The MBESSs have many effects on distribution systems. Some of the 
most important effects are on total power loss, voltage drop, and 
short circuit currents. Reducing the total power loss is one of the 
most important goals in distribution systems. The power loss in the 
system can be calculated as in Equation 4:

	 P R I
j

n

j j� �
�
�
1

2 	 (4)

where P represents the total active power loss on the distribution 
lines, (kW), Rj  represents the resistance of the jth line (Ω), and I j  
represents the current of the jth line (A).

When examining energy distribution systems, another important 
parameter is the voltage drop. While providing electrical energy to 
the loads in the network, the voltage values at the nodes must com-
ply with the limits. According to the standards, the voltage range 
should be between 0.95 and 1.05 pu [12]:

	 �V V Vij j i� � 	 (5)

where ∆Vij  represents the voltage drop on the line between buses 
i and j (V), Vj  represents voltage of the jth node (V), and Vi  repre-
sents voltage of the ith node (V).

The integration of distributed generation units in energy distribution 
systems can affect the magnitude and direction of the fault current 
during short circuit. In the literature, although there are studies on 
balanced fault currents, there are also studies dealing with the effect 
of unbalanced fault currents. The MBESSs, whose locations can be 
changed, also have an effect on short circuit currents [13].

IV. CASE STUDY
In the study, the IEEE 13-bus test system was used. The system 
includes a single feeder, a regulator, two step-down transformers, 
and nine loads. There are 115, 4.16, and 0.48 kV voltage values in the 
test system. In addition, a 500 kW MBESS was used in the study [14]. 
The OpenDSS program was used in the simulation studies. The test 
system that exists in the software’s library is shown in Fig. 3.

Analyses in OpenDSS program were carried out in dynamic mode. 
Various scenarios have been produced in order to observe the 
effect of MBESSs on the distribution system. First of all, the bat-
tery is examined in scenarios where there is no short circuit fault. 
Then, the total power loss and maximum voltage drops in the sys-
tem are determined for the cases in which there is no battery and 
the battery operates in discharge mode, and at various locations. In 
addition, by applying two different short circuit types to different 
locations, the fault current values for different battery locations are 
determined.

The graph representing the total power loss for the scenarios of the 
basic case, where there is no battery, and the location of the battery 
to the three-phase buses, is shown in Fig. 4. Batteries are located at 
three-phase nodes in the distribution system. When Fig. 4 is exam-
ined, the power loss in the system in the basic substation without 
battery is noted as 110.5 kW. As the location of the battery moves 
away from the feeder, the total power loss in the system decreases. 
When the battery is located on the bus number 675, which is the 
node farthest from the feeder, the total power loss in the system is 
calculated to be at least (85 kW).

The graph of the maximum voltage drops obtained for different sce-
narios is given in Fig. 5. When Fig. 5 is examined, the maximum volt-
age drop in the base case without a battery is measured as 2.503%. 
The battery is operated in the discharge mode, like a generation unit. 
As the battery system is positioned far from the feeder, the voltage 
drop decreases, depending on the loads. Accordingly, the least volt-
age drop is seen whevn the battery is positioned at the farthest point 
from the feeder, as expected. While the least voltage drop is seen in 
bus 675, and its value is 1.809%.

Fig. 3. IEEE 13-bus test system.

Fig. 4. Total power losses according to battery locations.
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The effect of the change of the battery location on the fault cur-
rents are observed when different short circuit faults are applied. 
For the case where the short circuit fault is in bus 632, the single 
phase-ground and three-phase fault current values in scenarios with 
no battery and different battery locations are shown in Fig. 6. As can 
be seen clearly in Fig. 6, the three-phase short circuit fault current 
is higher than the single phase-ground short circuit fault current. 
Positioning the battery close to the fault location slightly increases 
the fault current.

For the case where the short circuit fault is in bus 671, the single 
phase-ground and the three-phase fault current values in scenarios 
with no battery and different battery locations are shown in Fig. 7.

Adding the battery to the system increases the fault current in two 
different short circuit types. As can be seen in the graph in Fig. 7, 
the three-phase short circuit fault current is 5746 A in the base case 
without the battery, and it is calculated as 5787.2 when the battery 
is connected to bus 634.

In the analysis made with dynamic mode in OpenDSS, the fault cur-
rent graph in the scenario where the short circuit fault is at 671 and 
the battery is at 633 is shown in Fig. 8. While a short circuit fault 
occurs in the system in 0.5 seconds, the protection element separates 

the faulty part from the system with a delay of 0.1 seconds. After the 
faulty part is separated from the feeder network, the effect of the 
fault current of the battery is seen. In Fig. 8, black represents phase 
current 1 ( I1), red represents phase current 2 ( I2), and blue repre-
sents phase current 3 (I3).

In the scenario without connecting any battery units, when a short cir-
cuit fault occurs in bus 671, the fault current is calculated as 5746 A at 
most. During the scenario, represented by the graph in Fig. 8, the fault 
current reaches a maximum of 5789 A. This result shows that the bat-
tery has an additional effect of 43 A on the system.

V. CONCLUSION
Most studies in the literature focused on the effect of MBESSs on the 
energy management system with an aim to optimize the operational 
cost. In this study, the distribution system with MBESSs has been 
examined to find the impact of faults on the distribution system. The 

Fig. 5. Maximum voltage drops according to battery locations.

Fig. 6. In case of short circuit faults at 632, fault currents according to 
battery locations.

Fig. 7. In case of short circuit faults at 671, fault currents according to 
battery locations.

Fig. 8. In case of a short circuit fault at bus 671 and battery at bus 
633, the graph of fault current.
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integration of MBESSs into electrical distribution systems and their 
effect on parameters such as power loss, voltage drop, and short cir-
cuit current in the distribution system were obtained for different 
scenarios, tested on the IEEE 13-bus test system. 

According to the simulation results obtained using OpenDSS pro-
gram, the effects of MBESSs on distribution systems in different bat-
tery locations are interpreted as follows;

•	 When the scenarios are analyzed, a maximum decrease of 
power loss (23.07%) was observed compared to the base case.

•	 All bus voltages remained within the limits for considered 
scenarios.

•	 It has been observed that the location of the battery has little 
effect on the short circuit current. It is concluded that optimum 
battery placement is important at this point.

It will be useful to perform a time series analysis to deal with the 
effects in more detail and to study transient analysis to see the effect 
of MBESSs on the system in case of abnormal conditions, such as 
faults and overloads.
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ABSTRACT

The reduction of carbon-based energy consumption is one of the critical challenges of the 21st century. The development of efficient and reliable renewable 
energy is a significant task of this century. Green revolutions boost agriculture and are responsible for a drastic change in grain production, enhancing energy 
consumption due to optimum use of the agriculture machinery, basically for irrigation purposes. The scope of this paper is to present a Hybrid Renewable 
Energy System (HRES) that is capable of replacing the diesel pump commonly used for time-bound irrigation, as in the paddy field for rice production. The pro-
posed experimental HRES system consists of a photovoltaic (PV) generator, a fuel cell (FC), and a battery energy storage system (BESS). This system can provide 
0.4 kW, single-phase electrical power, tested under varying solar radiation and load demand conditions, suitable for all-weather electrical irrigation pumps of 
up to 0.5 HP capacity. Controlling of this hybrid system is carried out in the LabVIEW environment.

Index Terms—Battery energy storage system, controlling, hybrid renewable energy system, irrigation pump.

I. INTRODUCTION
Human development is continuous and is directly proportional to the 
rate of energy consumption. Green energy supply is a forced demand 
in this present era. Green revolutions boost agriculture and are 
responsible for a drastic change in grain production, enhancing energy 
consumption due to optimum use of the agriculture machinery, basi-
cally for irrigation purposes. Agriculture is unique because it accounts 
for 4 to 8 percent of the total energy demand [1] and is susceptible to 
energy demand. A very famous quote that is often used, is “Everything 
can wait, but not agriculture”, and this quote is highly justified in rice 
production. On average, about 2500 L of water need to be supplied for 
a paddy field to produce 1 kg of rough rice (by rainfall and/or irriga-
tion) [2]. During the rice crop’s reproductive stage, a water level of a 
minimum of 10 cm is required to be maintained in the paddy field for 
at least 20–30 days [3].

Apart from rainwater, farmers are dependent on other irrigation 
methods. A diesel pump is one of the options for drawing the water 
from a deep bored well. Diesel pumps are costly and have an adverse 
impact on the environmental and ecological systems.

A renewable energy-based hybrid system can deliver a constant 
power supply at the desired load level and can be used to sup-
port irrigation. Various renewable energy genres, including wind 
systems, photovoltaic (PV) cell, fuel cell (FC) (basically hydrogen 
fuel cell (HFC)), natural gas-based plant, and battery storage sys-
tem, are well established and enjoy the advantages of matured 
technology [4].

PV technology is beneficial for places where ample sunshine is 
available, and grid-support is not available or limited. However, 
PV-generators are also installed nowadays in grid-tied distribution 
areas for reducing coal-linked power demand. The power gener-
ated by a PV system is highly dependent on the availability of sunny 
hours. It isn’t easy to store the energy generated for future use (i.e., 
during cloudy days or at night). For reliable operation, other alter-
nate power sources such as FC systems, hydrogen storage tanks, or 
battery energy storage systems (BESS) must be integrated with a PV 
system [5,6].
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The HFC is comparatively an old technology which is now at a 
mature stage. HFC is beneficial for those areas where days of sun-
shine are less frequent or insufficient to fulfil the continuous load 
demand. Of the different FC power plants, such as the solid oxide 
fuel cell (SOFC), molten carbonate fuel cell (MCFC), phosphoric acid 
fuel cell (PAFC), proton-exchange membrane fuel cell (PEMFC), and 
others, the PEMFC power plant is preferred. It has been found very 
suitable, especially for a hybrid energy system [7,8].

Integrating the FC power plant with a battery storage system is 
economical, rather than using either of them individually. Without 
a battery system, the FC system must cater to all power demands, 
which will increase the FC power plant’s size and cost, with a reduc-
tion in the performance and life due to overloading. The same holds 
true when the BESS is used alone. In [9], a detailed dynamic model, 
the design, and simulation of a hybrid energy system have been dis-
cussed, with the conclusion that the battery-supported system has 
some unique features and advantages over systems without battery 
support.

A PV system for small-scale applications, such as water pump-
ing, street lighting, and irrigation applications in non-grid-sup-
ported remote rural areas, is discussed in Sukamongkol and 
Chungpaibulpatana [10].

A comprehensive technical analysis related to the combined opera-
tion of solar PV, wind power, and HFC has been carried out in Zahedi 
[4], and suggestions have been offered on some technical difficul-
ties regarding the interconnection of hybrid energy sources and their 
solutions.

Nowadays, control operations performed in the LabVIEW environ-
ment are gaining more attention than other software platforms. in 
Andreadou and Bonavitacola [11], an efficient method for residential 
load scheduling and control for smart homes in the LabVIEW envi-
ronment has been presented. PV generator modeling and simula-
tion, working in the LabVIEW platform for small power supply, is 
presented in Bendib et al. [12]. User-friendly operation and real-time 
data availability are some of the inherent features of the LabVIEW 
environment.

A PV, FC, and BESS-based hybrid system is proposed in this paper to 
irrigate paddy crops. The proposed hybrid system has been simulated 
in MATLAB/Simulink and implemented on the hardware available in 
the School of Renewable Energy & Efficiency (SREE) laboratory, NIT, 
Kurukshetra, India, in the LabVIEW environment, and tested under 
varying solar radiation and load demand conditions. The combina-
tion of FC-BESS with the PV system is an attractive choice due to the 
high efficiency, fast load–response, cost-effectiveness and reliable 
operation.

This paper is organized into five sections: after a brief introduction 
in section 1, and section 2 describes the configuration and behav-
iour of the elementary components in the proposed system. Section 
3 describes the system, and gives a brief idea about the PV-system, 
FC system, BESS, DC micro-grid, and their controlling techniques, 

respectively. Section 4 deals with the system’s software and hard-
ware development, followed by a conclusion in section 5, and 
references.

II. PROBLEM STATEMENTS
A comprehensive field study was carried out with the local farm-
ers’ help in the southern area of Bihar, a province of India, where 
paddy is a major food grain produced during the monsoon season. 
Some parts of this southern zone are hilly, and are not supported by 
the national grid. From valuable information provided by the paddy 
farmers, it is concluded that:

1.	 The rice crop needs approximately 10 mm of water per day.
2.	 During the rice crop’s reproductive time, it is desirable to main-

tain a water depth at a minimum of 10 cm for at least 20–30 
days in the paddy field.

The water requirement of a rice crop is calculated using simple water 
balance models [3], which include different inflows and outflows of 
water in a paddy field.

	 ER I ET P S SD CWS� � � � � � 	  (1)

where ER, effective rainfall; I, irrigation supply; ET, evapotranspira-
tion loss; P, deep percolation loss; S, seepage loss; SD, surface drain-
age or run-off loss; and CWS, change in water status.

From Equation 1, it is clear that if adequate rainfall is not available, 
water balance solely depends on irrigation.

By simple calculation, 1 mL of water is required to maintain 10 cm 
water depth in a 1-ha area of paddy field. The water pump with per-
formance and technical specifications given in Table I will be suffi-
cient, as it will fulfill the water demand within 2–3 hours. Therefore, 
an irrigation pump of this capacity can be considered ideal for time-
bound paddy field irrigation.

Thus, the problem statement is to design a hybrid renewable energy 
system (RES) comprising PV, FC, and BESS, producing a 0.4 kW 
continuous supply (day/night & all-weather) to overcome the die-
sel pump’s irrigation cost and adverse environmental impact. This 

TABLE I  
PERFORMANCE OF A TYPICAL 0.5HP SINGLE-PHASE IRRIGATION 

WATER PUMP

Specifications Descriptions

Power rating 0.5 HP (0.37 kW)

Full load current 4 A

Rated voltage 210 V

Water head 4 m

Discharge 15.5 Liters per second (LPS)
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system’s advantages are that it will be cost-effective, efficient, and 
reliable for irrigation support, and provide electric power for home 
illumination when not used for irrigation.

In the next section, a brief description of this hybrid system’s compo-
nents and working is given.

III. SYSTEM DESCRIPTIONS
This proposed hybrid system contains a PV generator, a FC, and a 
battery system stack. A line diagram of this proposed hybrid system 
is shown in Fig. 1.

A. The PV System
The illumination of the common junctions between two differ-
ent materials by photon irradiation, producing electrical potential, 
is termed a PV effect [13,14]. The electrical characteristics of a PV 
system can be well illustrated with single- and two-diode models. 
The single diode model is popular and close to the PV cell’s actual 
behavior [14,15].

Based on the single-diode model, mathematical modeling of the PV 
system output voltage is expressed as [14],
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where NS, the number of series cells per string; n, ideality factor; k, 
Boltzmann constant [J/deg.K]; T, PV cell temperature [deg.K]; q, elec-
tronic charge [C]; ISC, short-circuit cell current [A]; IPV, PV cell output 

current [A]; NP, the number of parallel strings; I0, PV cell reverse satu-
ration current [A]; and RS, series resistance of the PV cell [Ω].

B. The HFC
A FC is an electrochemical device that, like any battery, converts 
chemical energy into electrical energy [7]. The overall FC is com-
posed of several cells stacked as a single unit [7,15]. An FC power 
plant uses oxygen and hydrogen as reactants to convert chemical 
energy into electrical energy.

In the proposed system, mathematical modeling of the HFCs is 
implemented based on Nernst’s instantaneous voltage output equa-
tion [7], expressed as:
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where NO, number of series FCs in the stack; E0, standard no-load 
voltage [V]; F, Faraday constant [C/kmol]; R, Universal gas constant 
[J/kmol K]; T, absolute temperature [K]; pH2, hydrogen partial pres-
sure [atm]; pH2O, partial water pressure [atm]; and pO2, oxygen par-
tial pressure [atm].

C. BESS
A battery is simply an electrochemical cell that produces elec-
trical energy by chemical reactions [16]. A BESS is a stack of cells 

Fig. 1. Line diagram of the hybrid Renewable Energy System (hybrid RES).
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connected in series or parallel to provide the desired voltage or cur-
rent level demand.

The battery voltage, VBatt, is calculated separately by two different 
equations for the charging and discharging modes [17]. The math-
ematical modeling of the battery characteristics has been accom-
plished based on equations 4, 5 & 6 [9,17].
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where VO, constant output voltage of the battery [V]; K, the polariza-
tion constant [(Ah)−1]; Qmax, maximum capacity of the battery [Ah]; i*, 
reference current [A]; i, measured (actual) current [A]; q, the avail-
able capacity of the battery[Ah]; A, exponential voltage [V]; and B, 
exponential capacity [(Ah)−1].

The state of the charge of the battery (SOCBatt) is calculated as:

	 SOC
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�
��

�

�
��100 1
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where i, instantaneous current [A]; and Q, charge stored [C].

D. DC Micro-Grid
The solar PV system and the HFC act as a DC source and are con-
nected to a DC-link capacitor with a boost converter, while a battery 
bank also acts as a DC source. It is connected to the DC link via a 
bidirectional converter. 

The voltage source converter (VSC) plays a vital role between the 
DC-link voltage and the AC loads, acting as a temporary power stor-
age device to provide the voltage source inverter with a steady 
flow of power. The capacitor’s voltage is regulated using a DC-link 
voltage control loop that balances the capacitor’s input and output 
power. In the proposed hybrid RES system, the VSC controller has a 
phase-locked loop (PLL) to synchronize the DC power with the load 
frequency [18,19].

The reference currents and measured currents of the VSC are com-
pared, and are given to relay-based hysteresis controllers. These hys-
teresis controllers generate the switching logic for the IGBTs of VSC 
in the manner shown in Table II [20].

E. Power Converters
In this proposed system, the PV generator and the FC output volt-
age and current are controlled using a boost converter. The pulse 
width modulation (PWM)-controlling technique is commonly used 
to control the boost converters and the inverter’s output voltage. 
A full-bridge voltage–source inverter with four IGBT-based power 
switches is used here for DC to AC power conversion. A bidirectional 
buck–boost converter is used for charging and discharging of the 

battery. The output of this bidirectional converter is connected to 
the inverter through the DC link. 

F. Field-Programmable Gate Array
A field-programmable gate array (FPGA) provides the most conve-
nient way of designing the PWM generator for power converters. 
FPGAs are like a digital circuit that can be electrically coded to obtain 
the required modulation signals [21].

In this proposed system, an FPGA-based micro-controller chip is 
used for generating and controlling the gate pulses with the help of 
Very High-Speed Integrated Chip Hardware Description Language 
(VHDL) physical architecture. The VHDL code for the PWM generator 
is written using the Xilinx ISE 10.1software.

IV. IMPLEMENTATION
The proposed hybrid system is simulated on MATLAB/Simulink2017A 
and then implemented on the hardware available in the laboratory 
of SREE, NIT Kurukshetra, India, in the LabVIEW2018environment. 

This hybrid system consists of five components: the PV generator, 
the FC, the BESS system, power converters with specifications given 
in Table III, and the control section.

The PV system based on four mono-crystalline modules connected in 
series can generate up to 1 kW. Each module can generate 250 W of 
peak power. Rating of the PV generator chosen is based on exploiting 
its maximum benefit within the economic boundary.

The maximum power output of the HFC with a total of 48 cells con-
nected in series is up to 1 kW.

The BESS consists of 12 Li-ion battery units connected in series. The 
total output capacity of the BESS system is up to 1 kW. The RL load of 
0.4 kW active power-drawing capacity equivalent to the load of the 
desired irrigation pump capacity has been used to verify the perfor-
mance of the proposed HRES.

A. MATLAB Implementation
The MATLAB Simulation arrangement, as shown in Fig. 2, is developed 
based on the mathematical modeling, equations from (2) to (6), and 
the line diagram of the system as shown in Fig. 1. Rating of the compo-
nents in MATLAB is taken precisely, like that of the hardware setup.

TABLE II  
SWITCHING LOGIC OF THE HYSTERESIS CONTROLLER

Switching State Gate Pulse

I*
refA-i*

measuredA> upper band g1

I*
refA-i*

measuredA< lower band g4

I*
refB-i*

measureB> upper band g3

I*
refB-i*

measuredB< lower band g2
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B. Hardware Implementation
Based on the MATLAB model, hardware implementation is carried 
out in the laboratory, under varying solar radiation and load demand 
conditions, as shown in Fig. 3. The solar radiation and power demand 
data are based on real-world records.

Controlling the hardware components is carried out in the LabVIEW 
environment, and a simplified and user-friendly control panel is 
developed. A personal computer (PC) and an FPGA-based micro-
controller placed in the hardware setup communicate with a LAN/
ethernet cable.

C. Results and Discussions
The real-time data obtained from the hardware setup with a 
LabVIEW-based data analyzer and data stored in the Excel sheet is 
plotted with the help of the graph-plotter.

For power storage or to mitigate the load demands, the battery is 
operated in charging/discharging mode. Output voltage and current 
with frequency are captured on a real-time power analyzer (HIOKI 
3360 series) during the battery charging and discharging time, 
respectively.

Comparative analyses (quantitative and qualitative) of the MATLAB 
simulation and the hardware results, as shown in Fig. 4 and 5, sum-
marized in Table IV, provide the following important information:

•	 Battery charging/discharging activity during the load change is 
fast and responsive.

•	 The system is stable and fulfills the desired load demands.
•	 Frequency remains within the limit with ± 5% tolerance, which 

is acceptable.

TABLE III  
RATINGS OF THE COMPONENTS OF THE HARDWARE SETUP

Field-Programmable Gate Array (FPGA) Box

1. Control card technology FPGA

2. Pull-up card for inverter gate 
firing

8 Pulse-Width Modulation 
(PWM) signals

Single-phase inverter

1. Maximum DC input voltage 150 V

2. Output voltage 100 V AC

3. Output current 5 A

4. Switching frequency 10 kHz

LC filter for the single-phase inverter

1. Inductor 3 mH, 10A

2. Capacitor 10 µF

PhotoVoltaic (PV) system specifications and ratings

1. Number of channels 2

2. Short-circuit current per channel 0–20 A

3. Open-circuit voltage per channel 0–50 V DC

4. Maximum output power per 
channel

500 W

Boost converter for PV system

1. Input voltage 50 V

2. Input current 20 A

3. Output voltage 150 V

4. Output current 10 A

5. Switching frequency 20 kHz

Fuel cell components

1. Type of the fuel cell Proton Exchange 
Membrane (PEM)

2. Number of cells 48

3. Rated power 1000 W

4. Performance 28.8 V and 35 A

5. Reactants Hydrogen and air

6. Maximum stack temperature 65°C

7. Flow rate at maximum output 13 Liters per minute

Boost converter for fuel cell

1. Input voltage 28.8 V at full load

2. Input current 35 A at full load

3. Output voltage 150 V

4. Output current 10 A

5. Switching frequency 20 kHz

Battery energy storage system (BESS)

1. Battery type Lead-acid

2. Number of batteries 8, connected in series

3. Overall output voltage 96 V

4. Overall capacity 26 Ah

Bidirectional buck-boost converter for BESS

1. Input voltage 105 V (battery side)

2. Output voltage 150 V (inverter side)

3. Output current 10 A

4. Switching frequency 20 kHz
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•	 MATLAB model of the system mimics the behavior of the actual 
hardware setup. It can be said that desired system can generate 
sufficient power to run the irrigation pump.

•	 From Table IV, it has been observed that the performance 
of the battery in HRES has good transient and steady-state 
characteristics. 

•	 The limitation in the system designed is that it provides a limited 
load demand. However, the design can be expanded to mitigate 
the higher load by changing the components’ rating. During the 
off-irrigation period, the proposed HRES system can illuminate 
farms and homes.

V. CONCLUSION
The PV/FC/BESS hybrid power system designed and modeled for irri-
gation purposes is suitable not only for paddy fields but also for any 
crop. This hybrid system works in a standalone mode with controlling 
activity in the LabVIEW environment.

The hybrid system’s dynamic behaviors have been tested under vary-
ing solar radiation and load demand conditions, where the solar radi-
ation and power demand data are based on real-world records. The 
LabVIEW-based control strategy for the developed system is efficient 
and exhibits excellent performance, even for extended periods.

Fig. 2. Simulation arrangement of the hybrid Renewable Energy System.

Fig. 3. Hardware setup of the hybrid Renewable Energy System in the lab (a) Converters and inverter setup; (b) Battery stack; and (c) FC & PV 
emulator connected with the system).
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Fig. 4. Simulation results of the MATLAB model of the hybrid Renewable Energy System (1(a) and 1(b): Inverter voltage and current output; 2(a) 
and 2(b) Battery voltage and current during charging; and 3(a) and 3(b) Battery voltage and current during discharging).

Fig. 5. Results from the hardware setup of the hybrid Renewable Energy System (1(a) and 1(b) Output voltage, current, and frequency from the 
load-side during charging and discharging of the battery; 2(a) and 2(b) Battery voltage and current during charging; and 3(a) and 3(b) Battery 
voltage and current during discharging).
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ABSTRACT

In recent years, the global demand for energy has been increasing due to the rapid population growth, industrialization, technological development, and 
economic competition among the developed countries. Energy from renewable sources is now being widely used to meet this demand, especially solar or pho-
tovoltaic (PV) energy. Photovoltaic energy systems allow the conversion of solar electromagnetic waves of different wavelengths into DC energy in the visible 
light spectrum. However, the efficiency of the solar PV panel is adversely affected by partial shading conditions (PSCs) such as the shade of trees, leaves, clouds, 
buildings, or chimneys. One of the potential solutions is to use a bridge diode to increase the energy efficiency of the solar PV panel under PSCs. Therefore, in 
this study, the performance analyses of 80 W solar PV panels are carried out under six different conditions of partial shading. To present the superiority of the 
use of a bridge diode, the solar PV panel with bridge diode is analyzed under different intensities of solar radiation by MATLAB/Simulink. In addition, the effects 
of PSCs on the solar PV panel without bridge diode are evaluated in detail, as part of the experimental application. The results of the analyses under different 
PSCs reveal that the use of the bridge diode in the solar PV panels has a significant influence on the power produced from the PV system.

Index Terms—Partial shading condition (PSC), photovoltaic (PV) energy, power losses, renewable energy. 

I. INTRODUCTION
Recently, the number of applications based on renewable energy 
sources has increased significantly in an effort to reduce the depen-
dence on fossil fuels. With the rapidly increasing environmental 
damage attributed to the use of fossil fuels, scientists emphasize 
the importance of using energy from renewable sources effec-
tively to meet the global energy demand. Among the renewable 
energy sources, the global installed power capacity of solar energy 
is increasing considerably day by day. Critical parameters such as 
temperature, solar radiation, and shading affect the efficiency of 
photovoltaic (PV) energy systems. Especially, shading conditions dra-
matically reduce the electrical energy obtained from PV energy sys-
tems. Many studies have been conducted to eliminate or minimize 
the effect of full shading and partial shading conditions (PSCs) on the 
produced power, as reported in the literature.

The efficiency of PV cells is a vital parameter for solar energy sys-
tems. As partial shading significantly reduces the efficiency of the 

PV cell, different enhanced techniques have been developed to 
overcome this problem. In this study, the effects of five different 
PV array configurations on power generation, such as total-cross-
tied (TCT), honeycomb (HC), bridged-linked (BL), series-parallel (SP), 
and series have been investigated using MATLAB/Simulink, under 
six different shading conditions. According to the simulation results 
obtained, it is presented that the TCT configuration performs better 
than other configurations under all PSCs [1]. New PV array topolo-
gies have been proposed to increase the output power produced by 
the solar energy system under eight different shading patterns. The 
performances of existing and proposed PV array topologies have 
been comparatively examined using MATLAB/Simulink. According 
to the performance analysis results, the modified TCT configuration 
under PSCs approximately doubled the output power compared to 
the existing TCT topology [2]. Variable environmental conditions 
adversely affected the production of solar PV energy. Conventional 
maximum power point tracking (MPPT) techniques under PSCs 
may not be able to track the correct MPP. To minimize the negative 
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impact of partial shading on the generated power, different meta-
heuristic techniques have been presented in comparison with the 
simulation results. The simulation results show the superiority of 
Gray Wolf Optimization in the speed of convergence and the time 
to catch global MPP [3]. Various MPPT algorithms which have been 
widely applied in PV energy systems under PSCs in recent studies 
are discussed. It has been observed that novel MPPT algorithms as 
well as hybrid techniques are preferred to increase the efficiency 
of the PV energy system [4]. A new method has been developed to 
detect faults such as fire hazards and partial shading using the data 
of array voltage, array current, and radiation. In addition, experi-
mental studies have been carried out to present the effectiveness 
of the developed technique [5]. The advantages and disadvantages 
of MPPT techniques such as Particle Swarm Optimization (PSO), 
Perturbation and Observation (P&O), Cuckoo Search, Hill-Climbing 
(HC), Neural Network, Incremental Conductance (IncCond), and 
Fuzzy-Logic of PV energy systems under uniform radiation and PSCs 
are discussed in detail [6]. A new method has been developed to 
obtain P–V and I–V curves of a particular PV energy system under 
PSCs in different patterns using the standard test condition values 
of PV modules and the radiation values applied to each module. 
The simulation results obtained from MATLAB/Simulink show that 
the electrical properties of PV arrays under partial shading increase 

the prediction accuracy by including the real effect of bypass and 
blocking diodes [7]. The MPPT techniques based on bio-inspired 
algorithms under the changing environmental conditions of PV 
energy systems have been extensively examined and have contrib-
uted to the research in the field of MPPT [8]. PV array configurations 
are offered to reduce power dissipation under PSCs. Global MPP 
is readily determined, thanks to the developed method. In addi-
tion, it has been compared with the SP and TCT configurations to 
evaluate the performance of the proposed configurations, and the 
superiority of the proposed configuration is revealed [9]. A novel 
hybrid MPPT technique under PSCs is offered. The superiority of 
the present technique over the standard PSO algorithm and the 
P&O algorithm has been demonstrated by experimental and simu-
lation results [10]. The behavior of a PV array under PSCs has been 
examined using MATLAB/Simulink software [11]. Different shading 
conditions in the PV array have been investigated, and a formula has 
been developed to determine the critical point from the obtained 
results [12].

In the following sections of the paper, solar PV panel characteris-
tics and experimental investigation have been analyzed compre-
hensively. The performance analysis of the 80 W solar PV panel has 
been experimentally conducted under six different PSCs. The solar 
PV panel with bridge diode has been investigated with simulation 
under the different conditions of solar radiation by using MATLAB/
Simulink software, and the results obtained reveal the superiority of 
the use of bridge diodes. 

II. SOLAR PV PANEL CHARACTERISTIC
Photovoltaic solar cells, which have an important place in solar 
energy systems, convert solar energy directly to DC electrical energy 
when solar light (in the form of photons) falls on it. The warranty 
period determined by manufacturers for the smooth operation of 
solar PV panels is generally 25 years on average. However, it has 
been stated that the panel power decreases linearly over time. In 
this study, the performance of the solar PV panel used for the practi-
cal study is evaluated with the I–V and P–V curves given in Fig. 1. In 
addition, Table I presents the parameters of the solar PV panel used 
for the applied research.

Main Points

•	 The power obtained from photovoltaic (PV) panels is dra-
matically reduced due to the decrease in the efficiency of PV 
cells under different partial shading conditions.

•	 Shaded modules in the solar PV panels produce many maxi-
mum power points in the I–V and P–V curves. The number of 
those maximum power points has increased because of the 
increasing number of shaded modules.

•	 The bridge diode significantly improves the function of the 
PV panels under different shading conditions. A solar energy 
system with bridge diodes obtains significant power output 
compared to a system without these, showing that bridge 
diodes improve the operating efficiency of solar PV systems.

Fig. 1. Solar PV panels used in applied research (a) I–V and (b) P–V characteristics.
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In order to obtain maximum power from the solar PV panels used 
in PV systems, they are placed at a horizontal angle of inclination 
and the solar radiation is aimed to fall at a right angle. The level of 
radiation falling on the panels depends on the latitude and longitude 

of the location where the panels are placed. The performance of a 
solar PV panel is affected by many factors. Some of these factors are 
related to the structure of the panel itself, while others are related to 
the location and environment in which the panels are installed. The 
factors are material degradation, solar radiation, panel temperature, 
parasitic resistances, shade, contamination, and inclination angle.

The shading of solar PV panels is one of the major problems in 
solar energy systems. Shadow formation significantly reduces the 
power produced by the solar PV panels, causing huge losses to the 
customer. Trees, leaves, clouds, buildings, and chimneys can cre-
ate shadows on the panel, which cause a decrease in the electrical 
performance of the solar PV panel. The shading effect occurs when 
the system is not exposed to the same amount of radiation due to 
some obstacles in the path of light falling on the panel. In this 
case, solar cells are exposed to lower levels of radiation, and the 
shading effect reduces system power instead of generating power. 
Fig. 2 shows the I–V and P–V curves according to the amount of 
solar radiation reflected on the PV panel, due to shading.

Fig. 2. (a) I–V and (b) P–V characteristics of PV panels at different levels of solar radiation.

TABLE I 
ELECTRICAL PROPERTIES OF THE SOLAR PV PANEL USED IN THE 

APPLIED RESEARCH

Electrical Characteristics Value
Electrical 
Characteristics Value

Power Rating 80 W Voltage at maximum 
power (Vmp)

17.5 V

Open Circuit Voltage (Voc) 21.76 V Power Tolerances 0% - +5%

Short Circuit Current (Isc) 21.76 V Peak Efficiency 17.6%

Maximum Voltage 1000 V Current at maximum 
power (Imp)

4.57A

Fig. 3. (a) I–V and (b) P–V characteristics of PV panels at different temperatures.
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The output power of a solar PV panel is inversely proportional to 
the PV panel’s temperature. As the temperature of the solar PV 
panel increases, the power produced by the PV panel decreases. 
Therefore, the losses caused by temperature are proportional to the 
solar PV cell temperature. Fig. 3 shows the effect of temperature on 
the power produced by the solar PV panel.

As the temperature and solar radiation of the solar cell under the 
shadow change, the produced power decreases. In this case, the 
shadow results in mismatches of the currents generated from the 
solar cells of the solar PV panel. Shaded solar cells produce less cur-
rent than non-shaded chambers. However, since the solar cells in 
the PV panel are connected in series, the same current must flow 
through all cells. This situation leads to incompatibilities. Shading the 
part over one solar cell can significantly reduce the strength of the 
entire solar PV panel, as if all solar cells are shaded. When a solar 

cell is under a shadow, the current flow of the shadowed solar cell 
decreases.

Thus, the total current of the system passes over the shaded solar 
cell, causing a decrease in the produced power. By operating the 
bridge diode used for the solar cell under the shadow, the current 
is provided to pass around the shadowed solar cell. An examination 
of the bridge diode’s effect under partial shading reveals that the 
presence of a bridge diode in the solar PV panel causes changes in 
the I–V and P–V curves. If there is a bridge diode in the panel, there 
is more than one maximum point in the P–V curve of PSCs, while 
the power value decreases significantly compared to the situation 
in which there is no shade and no bridge diode. Under partial shad-
ing, mismatches owing to the location of the shaded panels and the 
shape of the shade reduce the power. The dynamic model has been 
created by MATLAB/Simulink, as shown in Fig. 4.

Fig. 4. The dynamic model of the solar PV panel at different levels of solar radiation and temperature.

Fig. 5. (a) I–V and (b) P–V characteristics of the bridge diode-connected solar PV panel under the different solar radiation conditions.
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The model shows the shading conditions of the solar PV panel with 
a bridge diode. The power characteristic of the solar PV panel under 
the different levels of solar radiation is presented in Fig. 5.

III. EXPERIMENTAL ANALYSIS AND RESULTS
This section details the effect of partial shading on the output power 
of PV panels, studied by experimental investigation. An experimental 

test setup was installed on the roof of Alparslan Turkes Science and 
Technology University in Adana. Experimental studies were per-
formed to investigate the performance of 80 W PV panels under six 
different partial shading cases. The effect of PSCs on short circuit cur-
rent and short circuit voltage of PV panels has also been examined. 
The open circuit voltage and short circuit current values of the 80 W 
PV panel were recorded by the PLC measurement station. The rela-
tionship between the solar radiation level and the produced power 
was observed by measuring the solar radiation using the pyranom-
eter. The experimental setup unit is shown in Fig. 6.

The solar cells used in the experiment were connected in series, each 
solar cell having a power of 2.2 W. In order to observe the maximum 
power point of the 80 W PV panel, experimental studies were carried 
out at 1000 W/m2 at 33 °C in the unshaded condition. According to 
the experimental results in the unshaded condition, the maximum 
power was 78.8 W at 16.8 V and 4.69 A. The PSCs of the solar PV 
panels are shown in Fig. 7.

Table II shows the detailed evaluation of the six different conditions. 
The short circuit current and open circuit voltage, maximum power, 
and panel temperature under each PSC for the 80 W PV panel are 
shown comparatively. Significant decrease in output power of PV 
panel is observed when the performance of the PV panel under 

Fig. 6. Experimental setup unit for partial shading conditions of 80 W 
solar PV panel.

Fig. 7. Partial shading (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5, (f) Case 6.
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shaded and unshaded conditions is compared. An 8.5-fold difference 
in output power between unshaded and fully shaded conditions was 
observed experimentally. In the studies in the literature, different 
photovoltaic array configurations such as TCT, HC, BL, and SP have 
been proposed to eliminate partial shading problems. In this study, 
in order to minimize the effect of partial shading on PV performance, 
the method using the bridge diode has been shown to obtain maxi-
mum power from the PV panel. As a result, it has been proven by 
experimental and simulation results that the panel efficiency of the 
PV panel without bridge diode is much lower than the PV panel with 
bridge diode under PSCs.

IV. CONCLUSION
The rapid depletion of fossil fuels makes it necessary to develop 
and use of alternative energy sources. Among the renewable 
energy sources, solar energy has come into prominence owing 
to its many advantages such as being emission-free, eco-friendly, 
infinite, reliable, preventing global warming, having low mainte-
nance costs, etc. Many critical parameters negatively affect the 
power produced by PV energy systems. Partial shading is one of 
the most significant problems that diminish the power obtained 
from PV energy systems. There are many different approaches such 
as PV array arrangements and bridge diodes that can be applied in 
PV energy system designs to minimize partial shading losses. This 
study has examined the improvement in output power of solar PV 
panel under PSCs. The performance of 80 W solar PV panels under 
different shading conditions has been analyzed experimentally and 
under simulation. It is presented that using a bridge diode increases 
the performance of the solar PV panel under different PSCs, based 
on the simulation results obtained from the MATLAB/Simulink soft-
ware. Hence, the efficiency of the solar PV array strongly depends 

on the usage of a bridge diode. Moreover, solar radiation levels 
and different shading conditions affect the efficiency of the solar 
PV energy system.
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ABSTRACT

With the rapid increase in energy consumption, the demand for small hydro power plants (SHPs) is increasing. The impact of these plants is significant, due 
to their low environmental damage, low execution cost, and minimum management cost. Moreover, in rural areas, they can also be used to facilitate drinking 
water and irrigation systems. This study considers a small hydro power plant (SHP) including a turbine with a permanent magnet synchronous generator (PMSG) 
attached to the DC microgrid through a voltage source converter (VSC) model. In this paper, a sliding mode controller is proposed to minimize the steady state 
errors and stabilization problems in an SHP-based DC microgrid. The asymptotic convergence of the proposed controller is analyzed using the Lyapunov stability 
theorem. Based on the Lyapunov stability theorem, the control law derives to ensure the asymptotic convergence to effectively minimize the steady state errors 
and improve the closed-loop system stabilization. The proposed control law also guarantees stable operation in a short limited time. As results, the proposed 
controller confirms speedy convergence of steady state error dynamics with negligible oscillations and reduces the limitation of chattering notably, without any 
loss in control accuracy. The simulation results illustrate the robustness of the proposed controller when subjected to disturbances and system nonlinearities.

Index Terms—Microgrid, permanent magnet synchronous generator (PMSG), sliding mode controller (SMC), small hydro power plant (SHP), voltage source 
converter (VSC).

I. INTRODUCTION
A microgrid is tiny part of the power distribution system, having com-
ponents like energy storage devices alongside the distributed gen-
erator, and controllable loads which allow increase to a competent 
energy system. A microgrid as seen from the utility grid perspective 
is similar to a generator because it is capable of comfortably dis-
connecting and operating independently after a fault occurs in the 
main grid [1]. Microgrids attract end users closer to the source gen-
erating electricity from distributed energy resources (DERs). These 
microgrids can work in dual mode, that is, the. islanded mode and 
the grid-connected mode. In case of any fault, a microgrid can be dis-
connected from the main grid. As the generation sources are distrib-
uted, it can easily work in the islanded mode. Environmental effects, 
the status of fossil fuels, and economic interest are the three major 
grounds for the growing awareness toward renewable resources 
as well as local generation. In the past few years, the evolution of 
renewable assets in electrical networks is expanding beyond the 
existing boundaries [2].

The transformation from the use of fossil fuels to sustainable energy 
resources as power originators in large industries is a major plan of 
action in reducing the effects of climate change. The carbon foot-
print on the earth is connected to the history of the huge demand 
for diesel products, electric power, and water. Moreover, consider-
ing their specific power demand, the merger of microgrids with cen-
tral grid controls in the grading of mining industries is an emerging 
matter [3].

The microgrid can work both with alternating current (AC) and 
direct current (DC). The arrangement of the DC system has certain 
benefits, such as minimizing losses and ease of amalgamation with 
measures of energy storage, due to which there is a sudden surge 
in the use of DC microgrids in recent times [4]. Digitalization and 
the enthusiastic emergence of new ideas offer the thrilling possibili-
ties of a microgrid transactive power system at the disposal level, 
to bring down transmission losses, reduce infrastructure costs of 
electrical systems, upgrade credibility, and amplify local energy 

21

DOI: 10.5152/tepes.2021.21028

Content of this journal is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License.

Received: June 3, 2021 
Accepted: September 20, 2021 

Published online: October 15, 2021 

Corresponding author: Sheetla Prasad, sheet​la.pr​asad@​galgo​tiasu​niver​sity.​edu.i​n

TEPES Vol 1., Issue. 2, 90-98, 2021

mailto:sheet​la.pr​asad@​galgo​tiasu​niver​sity.​edu.i​n


Singh and Prasad. Sliding Mode Control Strategy for a Small Hydro Electric Plant-Based DC Microgrid

91

TEPES Vol 1., Issue. 2, 90-98, 2021

usage, leading to reduction of electricity bills at the consumer 
end. Transaction energy, with essential factors such as demand 
response, distribution of energy resources, the local market for 
energy, and distributed records of technologies for exposure of 
dispersed can be framed as a smart grid system [5]. Over the past 
decade, there has been significant increase in awareness regard-
ing the DC microgrid, as it has shown huge dominance over the AC 
microgrid in terms of control simplicity, regulation, dependability, 
ease of integration to renewable energy sources, and DC load con-
nection. However, apart from these numerous benefits, the plotting 
and execution of a suitable protection system for DC microgrid resi-
due is a remarkable challenge [6].

The combination of distributed energy resources is possible with 
many platforms, most significantly with the microgrid. However, 
because of some issues with the blueprint and the absence of 
machineries, the microgrid is still developing into a wide-ranging 
and commercialized mix of systems to be integrated with existing 
electrical systems. There are many challenges concerning irregular 
values of renewable energy resources (RERs) [7]. The distributed 
energy resources (DERs) can drive the complex approach of the 
microgrid operating successfully in an islanded mode, by sincerely 
controlling it. In the central grid mode, the arrangement requires 
none or close to zero frequency as well as voltage variations in 
the middle of the grid and the microgrid project. The options of 
enhancing the harmonization of power flow into the microgrid 
structure can be controlled by smart grid technologies in a real-
time scenario [8].

Flowing water has a kinetic energy which gives rise to mechanical 
and electrical energy in the hydropower grid system. The flowing 
water rotates the hydro turbine and then returns to the water bod-
ies for other uses. The high efficiency (about 60–80%), long life span 
of the equipment, and absence of pollution or greenhouse gas emis-
sion, with low operating cost and maintenance cost are some of the 
major benefits of the hydropower grid system [9]. The installed 
power capacities of hydro power plants are distinguished as: pico 
hydro plants (less than 5 kW), micro hydro plants (5 kW to 100 kW), 
mini hydro plants (100 kW to 1000 kW), small-scale hydro plants 
(less than 10 MW), medium-scale hydro plants (10 MW to 100 MW), 
and large-scale hydro plants (over 100 MW capacity) [10]. The lead-
ing method suitable for generating renewable energy is nothing 
but a small hydropower plant. It is designed to work with low head 
and flow to drive the hydro turbine, which can be satisfied by a run 
of river type [11]. The basic components of a small hydro power 
plant (SHP) are the reservoir, penstock, forebay, intake structure, 
hydraulic turbine, surge chamber, speed governor, and an electrical 
generator [12, 13].

The SHP can overcome the problem of instability in power gener-
ation and can predict the future production of power. In terms of 
environmental impact, the SHP has low impact in comparison to 
photovoltaic power, wind power, and other DERs. The behavior of 
the SHP is completely nonlinear, and it can be integrated with the 
utility grid to regulate power flow effectively. For effective control, 

several controllers are developed [10-13] for the linearized state-
space SHP model, which do not consider the nonlinear dynamics of 
the SHP.

The sliding mode controller (SMC) is based on the discontinuous 
control law, which is known to be logical, to overcome many prob-
lems of robust stability [14-17]. The SMC offers control for a class 
under actuated systems, which can be seen in a cascade form with 
external disturbances. The SMC controller will force the motion of 
state trajectories toward the sliding surface with an exponential 
approach, enabling the handling of system disturbances and non-
linearities [15]. 

Due to the nonlinear nature of the SHP and the permanent magnet 
synchronous generator (PMSG), power flow regulation is a formi-
dable task. Hence, a nonlinear control strategy is the most feasible 
and capable in regulating power flow within the permissible sta-
bility limit. Thus, the present study contributes the following: 1) a 
nonlinear model of both SHP and PMSG with VSC is considered to 
minimize steady state errors and achieve faster stabilization using 
the nonlinear sliding mode control technique; 2) the proposed SMC 
is used to effectively stabilize nonlinear dynamics with passivity-
based desired equilibrium points; 3) based on the Lyapunov sta-
bility theorem, the control law derives to ensure the asymptotic 
convergence on equilibrium points to minimize the steady state 
errors and improve the closed-loop system stabilization; and 4) as 
results, the proposed controller ensures speedy convergence of 
steady state error dynamics with negligible oscillations and reduces 
the limitation of chattering notably, without any loss in nonlinear 
control accuracy.

This paper is organized as follows: The nonlinear state-space 
models of SHP and PMSG are reviewed in Section 2. The slid-
ing mode control-based control strategy is derived, followed 
by a  discussion of Lyapunov’s stability convergence analysis in 
Section 3. The simulation results and demonstrations of the pro-
posed control strategy on SHP and PMSG-based DC microgrid 
are illustrated in the Section 4, followed by concluding remarks 
drawn in Section 5.

II. PORTABLE HYDRO POWER PLANT DESCRIPTION
The energy of falling water generates electricity with the use of an 
SHP [18, 19]. It produces no gloomy effect on the regional stream, 
leading to a simple reroute of the volume of accessible water, and 
then returns the water to the stream. Since the stream flows con-
tinuously day and night, less battery stock is required in the SHP as 
compared to other technologies. Despite the stream being far away, 
it is feasible, as these large distances can be overshadowed by high 
voltage generators [20]. The periodical stream offers sizable perfor-
mance using a design combining a hybrid solar and water system. 
It is always important to study and review the proposed location to 
check the availability and amount of hydropower present. The com-
ponents of the SHP are a turbine, a PMSG, and a VSC connected to a 
DC microgrid. Water is considered to be a renewable energy source, 
as shown in Fig. 1 [19-21].
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A. Hydraulic Turbine Dynamics
The hydraulic turbine is considered to be the main component of the 
SHP and is also known as the prime mover because of the fact that 
it converts the kinetic energy of descending water into rotational 
mechanical energy, eventually generating electrical energy with the 
use of generators that are attached to the turbines [22]. The tur-
bine is made up of rows of blades that are connected on a rotating 
shaft or a plate which rotates due to the collision when the water 
(with velocity and pressure variations) strikes the blades. The model 
of the hydraulic turbine includes the dynamics of penstock, tunnel, 
servomotor, and head losses [23]. As in Newton’s law, the change in 
momentum results in generation of a force which is directly propor-
tional to the change which can occur on fluids also. By applying this 
law, the dynamic model of a tunnel is obtained, resulting from the 
change of water momentum on the penstock and pressure at the 
head of the tunnel [19]:

	 T
dq
dt

h k qw f� � �1 2 	  (1)

	 h
q
y

�
�

�
�

�

�
�
2
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A servomotor can be considered, which works to achieve rotational 
or linear motion that is directly proportional to the supplied com-
mand signal. In this paper, the servomotor is used to control the 
flow of water by managing the rotational motion of the spear valve. 
The spear valve operated by the servomotor is positioned below the 
penstock and manages the flow of water into the turbine [24]. The 
general model of the servomotor can be depicted as:

	 T
dy
dt

u yy � � 	  (3)

The motion of the turbine is transferred into mechanical power 
and calculated by the multiplication of the water flow and the pres-
sure head. Since everything has certain losses, this equation also 
includes turbine losses which can be taken into account by subtract-
ing between no-load flow and actual flow, in which the no-load flow 
is decided by a rated head in the SHP. The per unit turbine power is 
determined as

	 P A h q qm t nl� �� � 	  (4)

The pneumatic turbine blades are maintained against the stream 
of water, which interchanges its momentum. As the momentum is 
exchanged, a resulting force is generated, leading to the rotation of 
the turbine.

In (1) to (4), the terms Tw, Ty, h, q, qnl, y, kf, u and At are described as 
the time constant of water, time constant of the servomotor, hydrau-
lic head, normalized flow on the penstock, the no-load flow rate of 
the hydro turbine, gate position, friction losses, input control, and 
constant of proportionality, respectively.

B. Permanent Magnet Synchronous Generator Dynamics
An alternator is used, similar to a PMSG, which provides the constant 
excitation field by using a permanent magnet in place of a coil [25]. 
Here, the rotor and the magnetic field revolve at the same speed. 
This differs from a normal generator, leading to a voltage drop with-
out an option to regulate when the generator is charged. Therefore, 
the PMSG converts the mechanical energy obtained from the 
hydraulic turbine into electrical power, as represented in Fig. 2. To 
connect the PMSG to a DC microgrid, a VSC is used [26]. The VSC 
is basically a converter that produces AC voltage from DC voltage, 
and can be called an inverter, with the ability to transfer power in 
any direction. The VSC has certain features which enable control of 
the phase angle, the magnitude, and the frequency of the output 
voltage [27]. The VSC comprises six insulated-gate bipolar transistors 
(IGBTs) [19].

The reference frame comprising the dynamic model of PMSG is 
determined [19] as:

	 L
di
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R i L w i vg
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g dg g m dg d� � � � 	  (5)
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Fig. 1. Representation of an SHP.
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The output voltage of PMSG is given in (10):

	 v m vdq dq dc= 	  (10)

where mdq𝜀[–1,1] is the modulation index and the terms in (5) to (10), 
that is, Tm, Te, R, L, vdc, idq, vdq, wm, ψ, and M are the mechanical torque, 
electrical torque, PMSG stator winding resistance, PMSG stator wind-
ing inductance, DC link voltage, PMSG output current, PMSG output 
voltage, rotor speed, permanent magnetic flux produced by the rotor 
magnets, and moment of inertia of the hydro turbine respectively.

III. CONTROL METHODOLOGY
The SMC has many advantages due to its simplicity and robust-
ness in case of definite unpredictability and disturbances, which 
are well recognized, but also has a few limitations like chattering 
and brutalness of control forces, which are also well known [28]. 
To overcome these limitations, certain procedures can be followed, 
like the computational intelligence technique, neural network, 
fuzzy system, variable damping ratio strategy, and evolutionary 
computation. The main merits of a sliding mode controller are 
the achievement of desired control through the selection of a 
suitable sliding manifold, which reaches the manifold and can 
be maintained there afterward through a discontinuous control 
to compel the system state remains in stable region. Hence, The 
SMC designs are categorized into two modes: the reaching phase, 
before entering the sliding manifold; and the sliding mode phase, 
where the system is compelled to stay in that mode after the 
reaching phase [29]. The SMC techniques are productive tools to 
discard the system uncertainties. Accordingly, the main assets of 
SMC are inconsiderate to internal and external variations and the 
overlapping of the sliding parameter to zero in a limited time [30-32].  
Hence, the sliding mode control scheme is considered here, as 

shown in Fig. 2, to enhance the closed-loop system dynamics of 
the SHP-based DC microgrid against disturbances.

The load disturbance and system uncertainties in the dynamics of 
the reaching phase are highly preferable for the selection of sliding 
(switching surface) and are chosen in (11):
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where, xd1, xd2, xd3, xd4 and xd5 are stable equilibrium points of the SHP 
and PMSG dynamics. All equilibrium points are taken from passivity-
based control approach [19, 33] and the above equilibrium points 
are considered here in (12):
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The SMC design process is broadly classified into two modes, the 
reaching and sliding mode. The states trajectories (1), (3), and 

Fig. 2. Proposed control strategy for an SHP-based DC microgrid.



Singh and Prasad. Sliding Mode Control Strategy for a Small Hydro Electric Plant-Based DC Microgrid

9594

TEPES Vol 1., Issue. 2, 90-98, 2021

(5)–(7) are considered to obtain equivalent dynamics after applica-
tion of the reaching condition (σ = 0) in (11):
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Now the system trajectories slide on the switching surface after 
reaching it. Hence, sliding condition ( � � 0 ) is applied on (11) and 
written in (14):
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From (3), (5), (6), and (12), the dynamics of (14) becomes equal to 
the desired stable equilibrium states and slide on the switching sur-
face. Hence, (14) can be written in (15):
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Theorem 1: To reach and slide on the switching surface within the 
bounded region, the system trajectories should be equal to stable 
equilibrium states using the SMC control law in (16):
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Where, tuning terms k1, k2, k3, k4 and k5 are positive scalars. 

Proof: The asymptotic convergence criteria are proved using 
Lyapunov’s function in (17):
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The above (17) is differentiated, and after substitution from (3), (5), 
(6), and (12), it can be written in (18):
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Using SMC control law (16), the above equation in (19):
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The closed-loop dynamics of the SHP-based DC microgrid with SMC 
law converges asymptotically on the desired stable equilibrium 
states. Hence, the above equation is simplified in (20):

	 d
dt

k sign k sign k signT T�
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	  (20)

However, the SMC law converges asymptotically on desired stable 
equilibrium states for k3 > 0, k4 > 0, and k5 > 0 respectively. This 
completes the proof.

IV. RESULTS AND DISCUSSION
In this section, the robustness of the proposed control scheme is 
validated on SHP-based DC microgrid systems. The nonlinear state-
space dynamics of the SHP-based DC microgrid systems is simulated 

TABLE 
SYSTEM PARAMETERS AND VARIABLES [20]

Components Parameters Values (in unit)

PMSG P 20 kW

vdc 480 V

wm 2π34 rad/s

Rg 0.05 pu

Lg 0.08 pu

ψ 1.50 pu

M 25.0 pu

SHP Tw 4 sec

qnl 1.25

Ty 0.3 sec

kf 1.7*10−4 pu

At 1.25 pu

Controller tuning 
parameters

k1 1.5 pu

k2 2.0 pu

k3 0.3 pu

k4 4.0 pu

k5 0.9 pu
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Fig. 3. Desired active power disturbance pattern in SHP.

Fig. 4. (a) Normalized water flow of the SHP; (b) water head of the SHP; (c) d-axis current response of the PMSG; and (d) q-axis current response 
of the PMSG.
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using MATLAB© software, as shown in Fig. 2. The SHP-based DC 
microgrid system parameters are given in the appendix in Table.  
The microgrid model under discussion contains a PMSG having val-
ues of 20 kW, an SHP, a 480 V DC grid, a hydraulic turbine, and a VSC.

The performance of the sliding mode controller is demonstrated in 
presence of [01001] initial condition and random uncertainties in 
the desired active power reference in SHP, as shown in Fig. 3 respec-
tively. The deviations in normalized water flow and water head in 
the reservoir in SHP, and d-axis and q-axis currents in PMSG dynam-
ics are shown in Fig. 4(a-d) respectively. It is seen that deviations in 
normalized water flow and water head in the reservoir in SHP are 
negligible, with very short time interval, due to presence of random 
uncertainties in the desired active power reference in SHP.

The trajectories of the PMSG dq-axis currents are also shown in 
Fig.  4(a-d) and found within the limit range. Hence, the proposed 
control structure converges the SHP system trajectories on the 
desired stable equilibrium point effectively, which remains in the 
stable region.

The DC voltage deviation at the VSC output terminal, SHP con-
trol effort, and PMSG dq-axis voltage control efforts are given in 
Fig. 5(a-d) respectively. It is evident that the oscillations in DC volt-
age and chattering in the controlled signals are minimum due to the 
robust quality of the proposed control strategy, even in the presence 

of arbitrary random desired active power reference in SHP. Hence, 
the proposed controller confirms speedy convergence of system 
dynamics on the equilibrium point, with negligible oscillations; and 
it improves steady state error responses simultaneously with reduc-
tion in the chattering against input uncertainty.

The PMSG rotor angular speed deviation and generated active power 
deviation are shown in Fig. 6(a-b) respectively, in the presence of 
arbitrary random desired active power reference in SHP and initial 
state perturbations. It is evident in the said figure that the PMSG 
rotor angular speed and active power both have minimum steady 
state errors with negligible oscillations.

It is observed that the sliding mode-based control scheme converged 
the SHP and PMSG system nonlinear dynamics on the equilibrium 
point effectively and is insensitive even in presence of uncertainties 
in the desired parameters. Thus, the proposed control scheme has 
negligible steady state error and faster stabilization.

V. CONCLUSION
The microgrid plays an important role in the electric power sys-
tem because it can provide reduced reliance on the local utility 
microgrid, better service reliability, and also an enhanced economy. 
In this paper, a sliding mode controller is proposed to minimize the 
steady state errors and stabilization problems in an SHP-based DC 
microgrid. The nonlinear model of both SHP and PMSG with VSC 

Fig. 5. (a) DC microgrid voltage; (b) control effort of the SHP; (c) d-axis control effort of the PMSG; and (d) q-axis control effort of the PMSG.
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was considered to minimize the SHP-based DC microgrid issues. The 
proposed controller design effectively interpreted the steady state 
errors and stabilization challenges in the SHP-based DC microgrid. 
Based on the Lyapunov stability theorem, the control law was 
derived to ensure the asymptotic convergence to minimize the 
steady state errors and improve the closed-loop system stabiliza-
tion effectively. The proposed control law also guaranteed stable 
operation in a short limited time. As results, the proposed controller 
confirmed the speedy convergence of steady state error dynamics 
with negligible oscillations and reduced the limitation of chattering 
notably, without any loss in control accuracy. In future, the integra-
tion of the microgrid with the live grid will be analyzed using a cen-
tralized controller in the presence of communication delays.
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ABSTRACT

In this study, the efficiencies of three different neural network load forecasting algorithms are compared to determine the best performance. The algo-
rithms––Levenberg–Marquardt, gradient descent, and gradient descent with momentum and adaptive learning rate backpropagation are used to train a neural 
network (NN) model for energy demand prediction on a power system. Prior loads, weather parameters (temperature, relative humidity, and precipitation), 
and customer population of the supplied region are employed as training inputs. To ascertain the accuracy of the predictions, mean absolute error and mean 
square error are used as evaluation indices, and the algorithm with the least index values is deployed on a transmission substation. The Levenberg–Marquardt 
algorithm was found to be the most efficient candidate, and this algorithm is therefore recommended for adequate and proper system management, planning, 
and expansion, to enhance the efficiency, effectiveness, and accessibility of power supply.

Index Terms—Algorithm, comparison, load forecasting, model training, neural network, transmission substation.

I. INTRODUCTION
The ever-increasing human population and the need for industrial-
ization have led the human race to a dire need for stable and qual-
ity electrical energy [1, 2]. Proper planning for adequate electrical 
energy is therefore an absolute necessity. Load forecasting is an 
important planning practice in power system industries, as its rel-
evance stems from both the energy perspective and the economic 
angle [3]. Accurate load forecasting has many benefits, both mana-
gerially and economically. In the absence of efficient and effective 
forecasting of load, wastage is inevitable. Thus, robust forecasting 
is absolutely essential for the stakeholders in the energy sector [3]. 
Electrical load forecasting plays a key role for energy providers, eco-
nomic consortia, and other corporations in the domain of electrical 
energy [4]. However, for a load forecast to best serve its ultimate 
purpose, it must be accurate, fast, and robust [5]; and the loss func-
tion should be optimally minimized [6].

There has been a lot of attention on load forecast studies using dif-
ferent methods with various time bounds [7]. While some studies 
have used statistical techniques [8-10], there are others that have 

used the artificial intelligence (IA) algorithms or machine learn-
ing models [11, 12]. One of the machine learning models that has 
gained a lot of relevance in load forecasting is the neural network 
(NN), which is a machine learning pattern that mimics the working 
function of the brain [13]. Machine learning uses data and produces 
a model to perform a task [14].

Load forecast in a power system is generally classified into short-
term load forecast (STLF), medium-term load forecast (MTLF), and 
long-term load forecast (LTLF) [4]. However, [5] presents a fourth 
type, with the addition of very-short-term load forecast (VSTLF). The 
VSTLF has the least time of forecast, as [6] highlights that the period 
of this forecast is from one minute to one day. Conversely, [4] pro-
posed that the range of VSTLF is from a few minutes to an hour ahead. 
The time range given by the latter is worth noting because if the 
time range extends to a day, then it is STLF [15]. The predictions of 
load for various time horizons are noted for various operations [10]. 
Very-short-term load forecast is significant because it helps the elec-
tric utilities and grid operators in making important decisions on 
real-time scheduling of electricity generation, real-time operation, 
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demand–response, security assessment, sensitivity analysis, and 
load frequency control [3]. Furthermore, it is also helpful in real-time 
control of the electrical power system [4]. While [16] proposes that 
load prediction from a few hours to a few days is STLF, the authors in 
[4, 8–10] are more specific that STLF is often between an hour and 
one week. Short-term load forecast also gives hourly forecast results 
and is useful in power system decision making in overload condi-
tion and in spinning reserve planning [6]. It also plays an important 
role in grid stability [16], and moreover, [15] add that STLF provides 
useful notifications for power system administrators to enhance load 
usage. In the case of MTLF, the range is mostly between 7 days and 
12 months [3, 13, 14], and its significance includes providing the 
power system stakeholders with adequate notification for system 
expansion, power system equipment requirements, and employ-
ment of staff [17]. Any load prediction that is for more than a year 
is grouped as LTLF [18], which lasts years and even decades, and 
is useful for future expansion, planning, as well as recruitment of 
staff [15, 19].

Considering its numerous aspects of importance in power systems, 
load forecasting needs to be efficient and effective. The various 
techniques used in forecasting power system loads are grouped 
into three, namely, the statistical or classical or parametric method, 
the machine learning or non-parametric method, and the hybrid 
method [1]. Because electrical loads are affected by several factors 
like class of consumers, variation in the calendar, holidays, the time 
of day, economic activities, random activities like sports and festivals, 
meteorological parameters, and so on, load-prediction techniques 
need to be compared for optimal choice. Among the meteorological 
factors, temperature is the most important and most common input 
[16, 17]. In an evaluation of the statistical methods as presented in 
[8], three analytical techniques are employed to address the MTLF 
problem, with mean absolute percentage error and root mean 
square error used as evaluation metrics. A comparison of the three 
techniques shows that the technique of linear regression performs 
better than both compound growth and quadratic regression tech-
niques. The NN is employed by [1] to predict a power system, with 
mean square error (MSE) and mean absolute error (MAE) used as 
evaluation indices in the work which compares the backpropagation 
neural network (BPNN) and the radial basis function neural network 
(RBFNN). The BPNN has a better model, with ten hidden neurons, 
while the RBFNN has better architecture, with 15 neurons. In the 
work, the Levenberg–Marquardt (LM) algorithm performed better 
than the GD with momentum and adaptive learning rate backpropa-
gation (GD+) algorithm. Meanwhile, the shortcoming in the work 
relates to the large values of the performance metrics. In Ref [19], 
NN performed better than the support vector machine, k-nearest 
neighbors, generalized regression neural network, and the Gaussian 
process regression and recurrent neural network; with the least 
value of 1.5 during the validation process, while the other machine 
learning methods had values greater than 1.5.

In this present study, three different algorithms are compared, as 
they are employed to train the artificial neural network (ANN) and 
to ascertain the one that performs optimally. To ascertain the accu-
racy of the predictions, MAE and MSE are used as evaluation indices. 

The optimal algorithm is consequently used for electrical load pre-
diction in a transmission substation and then recommended for 
adequate and proper system management, planning, and expansion, 
to enhance the efficiency, effectiveness, and accessibility of power 
supply. The rest of this paper is structured as follows: while Section II 
presents the methodology of the study, the results obtained and the 
analyses of same are contained in Section III, and Section IV con-
cludes the study.

II. MATERIALS AND METHODS
Performances of Levenberg–Marquardt (LM), GD, and gradient 
descent with momentum and adaptive learning rate backpropaga-
tion (GD+) are compared to ascertain the optimal algorithm, as the 
three are used in the training of ANN. The best performing one is 
thereafter deployed for load prediction on a transmission substation. 
The Osogbo Substation in Southwest Nigeria is strategically located 
very close to the National Control Centre; therefore, the Transmission 
Company of Nigeria uses the substation for grid stability. Electrical 
load data were obtained from the Regional Control Centre, while 
information on weather parameters was obtained from the National 
Aeronautics and Space Administration (NASA), and the population 
data were obtained online. As shown in Fig. 1, feed-forward back-
propagation is employed in modeling the NN, with six inputs––tem-
perature, relative humidity, precipitation, population, actual load of 
year 2011 and actual load of year 2012––feeding the model. While 
Table I shows the values of the input parameters, Fig. 2 shows that 
there are 15 neurons in the hidden layer of the model, with hyper-
bolic tangent as the activation function.

The target of the model is the actual load for year 2013, which is the 
model’s output. The MSE and MAE are used to evaluate the network, 
and are described as [1]:

	 MSE � �� �
�
�1
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y y
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�
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0
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y y
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For design and training of the NN, the perceptron and the algorithms 
are described. Shown in Fig. 3 is the block diagram of the perceptron, 
while Fig. 4 depicts a single-layer NN.

Fig. 1. ANN block diagram representation.
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For the perceptron: 

	 y g w X WT� �� �0 	 (3)

where y  is the output, g is the activation function, w0 is the bias, 
X is the inputs matrix, and W is the network weights [6].

In the NN, the weights that separate the inputs and the hidden stra-
tum are W(1), while those weights that separate the hidden stratum 
and the final stratum are W(2). As given in [6], the hidden layer is 
described as:

	 a w x wi i
j

m

j j i� �� �
�

� ��, ,0
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1

1 	  (4)

Thus, the hidden layer output will be g(ai) which corresponds to the 
inputs that feed the output layer:
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Fig. 2. Neural network architecture.

Fig. 3. A perceptron.

Fig. 4. Single-layer neural network.

TABLE I 
INPUT PARAMETERS OF THE NEURAL NETWORK

Input Parameters of the Neural Network

Months T (°C) Relative Humidity Precipitation (mm) Population 2011 Peak Load (MW) 2012 Peak Load (MW)

January 24.18 70.90 31.98 614917 66.1 65.2

February 25.73 77.81 47.31 615834 63.7 66.2

March 26.14 84.09 60.72 616750 66.8 68.9

April 25.69 84.15 138.97 617667 69.4 68.9

May 25.02 87.72 209.95 618583 70.9 72.1

June 24.35 88.58 204.55 619500 60.4 77.5

July 23.60 89.26 214.75 620416 62.1 77.5

August 23.39 88.86 182.19 621333 65.1 79.6

September 24.14 89.25 370.49 622249 60.7 67.9

October 24.81 88.39 203.07 623166 56.4 68.7

November 24.96 83.43 72.98 624083 68.9 79.0

December 24.45 70.68 28.27 625000 66.1 78.4
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Therefore,

, , , ,y g w g a w g a w g a w g a� � � � � � � � � � � �� � � � � � � �
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The algorithms of this study are LM, GD, and GD+. While LM is a 
modification of Newton’s method [20], GD is a classical algorithm 
for weight updates in the NN [21], and extension to GD produces 
the GD+ [22].

A. Levenberg–Marquardt
Being a modification of Newton’s method, LM is represented using 
Newton’s equation [23]: 

	 x x H x gk k k k�
�� �1

1( ) 	  (7)

where H is the Hessian matrix, xk the current value of x, g is the gradi-
ent, and xk+1 is the updated value of x. The Hessian matrix may not be 
positive definite. Hence, the LM modification addresses this short-
coming by adding µkI to the Hessian matrix. I is an identity matrix 
and µk ≥ 0. Thus, 

	 x x H x I gk k k k k�
�

� � � � �� �1
1

� 	  (8)

And by introducing a step size, αk (8) becomes, 

	 x x H x I gk k k k k k�
�

� � � � �� �1
1

� � 	  (9)

Furthermore, when µk→0, the LM modification tends to behave like 
the pure Newton’s method. Also, when µk→∞, the algorithm attains 
a pure GD with a small learning rate. The LM algorithm is, on the 
other hand, obtained from the Gaussian method [20] in (10): 

	 x x J J J ek k
T T

�

�
� � � �1

1 	  (10)

The Jacobian matrix is denoted by J and e stands for network errors. 
Therefore,

	 x x J J I J ek k
T

k
T

�

�
� � �� �1

1
� 	  (11)

B. Gradient Descent
For the GD algorithm, the loss function is minimized by calculating 
the slope, which is used in updating the weights, and is mathemati-
cally modeled as [24]: 

	 x x gk k k k� � �1 � 	  (12)

From (12), αk is the learning rate, and in the NN, the weights are 
updated to optimize the errors; xk denotes the previous weights, 
while xk+1 denotes the updated weights; and gk is the derivative of 
the loss function with respect to the weights. During training, the LM 

algorithm moves from being close to GD to being close to Newton’s 
method. This shows that the LM algorithm is the hybridization of GD 
and Newton’s method 

C. Gradient Descent with Momentum and Adaptive Learning Rate 
Backpropagation
Produced by extension to the GD, the GD+ algorithm ensures elimi-
nation of the possibility of being trapped in the local minimum dur-
ing the training process, by adding a momentum constant to the GD 
algorithm as [22].

	 x x Vk k k t� � �1 � 	  (12)

Where,

	 V V gt t k� � �� ��� �1 1 	  (13)

Where, β is momentum constant, taking values 0 < β < 1. When 
β = 0, (13) becomes Vt = gk. Therefore, when the momentum con-
stant is zero, GD is obtained. The default value of β is 0.9 [25].

III. RESULTS AND DISCUSSION
A. Correlation Analyses of the Inputs Variables
Fig. 5–8 represent the correlation plots of the input variables in the 
NN with respect to electrical load, in order to verify the effects of 
the inputs on the load. The temperature has a positive correlation 
of 0.3606 as shown in Fig. 8, which implies that an increase in tem-
perature will lead to an increase in electrical load in the supplied 
region. Moreover, relative humidity, precipitation, and popula-
tion have corelation coefficients of –0.3458, –0.4394 and –0.2533, 
respectively. They all have negative correlation with respect to the 
load. However, the correlation of population shows that an increase 

Fig. 5. Scatter plot of temperature (OC) against actual peak load 
(MW) of 2012.
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in population does not translate to increase in electrical load in the 
region under study. This problem could be mitigated by using renew-
able energy [26]. The stakeholders ought to look at this aspect criti-
cally to enhance the development needed in Osogbo, because the 
availability and accesibililty of elecrtrical load are synonymous with 
development.

B. Regression Analyses
The datasets used for the simulation were divided into 70% for 
training and 15% each for validation and testing of the NN model. 

The regression plots for the three algorithms have been presented 
in Fig.  9–11. Each of the plots has the output against the target. 
The closer the target to the output, the better the regression plots. 
Likewise, the more the regression value is to 1, the better. The out-
put value represents the equation of a straight line. The coefficient 
of the target is the gradient and the constant value is the intercept 
on output axis. Also, the more the slope is to unity and the intercept 
to zero, the better the regression plot. Each of the algorithms has 
four different plots; the training, the validation, the test, and the all 
plots. The plots of the LM algorithm are shown in Fig. 9. The algo-
rithm was well trained and so has regression value of 1, while the 
GD and GD+ algorithms have values of 0.9968 and 0.98741 respec-
tively. All the three algorithms performed well during validation and 
testing, as each has a regression value of unity. However, the all plots 
give the overall best performing algorithm. The LM, GD, and GD+ 
algorithms have values of 0.96799, 0.83317 and 0.93658 respec-
tively. These results mean that the LM algorithm has the best per-
formance during the training, because its value of 0.96799 is the 
closest to 1.

C. Performance Metrics of the Algorithms During Training
The best performing algorithm was also validated using the evalu-
ation metrics. The MAE and MSE functions in the MATLAB Neural 
Network toolbox were used to evaluate the performance of the 
three algorithms during the training process. The MAE and MSE of 
the algorithms are shown in Fig. 12. The LM algorithm has the least 
values of MAE and MSE, 0.602 and 2.0768 respectively, while GD 
has the highest values, 1.4559 and 9.9834 respectively, and GD+ 
performed better than GD because of the momentum it adds and 
because its learning function could adapt better. The work of [1] also 
proved that LM is better than GD+. Theoretically, both GD and GD+ 
are first-order algorithms while LM is a second-order algorithm [23], 

Fig. 6. Scatter plot of relative humidity (%) against actual peak load 
(MW) of 2012.

Fig. 7. Scatter plot of precipitation (mm) against actual peak load 
(MW) of 2012.

Fig. 8. Scatter plot of population against actual peak load (MW) of 
2012.
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which can solve more complex problems. Consequently, LG was 
deployed as the forecasting algorithm in this study.

D. Training and Prediction of the LM Algorithm
Fig. 13 shows the plots of LM during training. The graph illustrates 
that the target loads are equal to the output loads, except for the 

months of March and August. The overall errors are nearly zero. 
This showcases the good performance of the LM algorithm during 
training process of the NN model. This model was then used for 
prediction as presented in Fig. 14, which shows that the forecasted 
load is closest to the actual load for the months of April, May, and 
September. The errors are between the range 10 and –10, while the 

Fig. 10. Gradient descent algorithm regression plots.

Fig. 9. Levenberg–Marquardt algorithm regression plots.
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average prediction error is –2.05301. The LM algorithm has relatively 
good performance in this study, as illustrated in Table II which shows 
MAE to be 6.4675 and MSE 57.9962. The value of MSE is always 
greater than MAE because MSE penalizes errors more than MAE, as 
shown in (1) and (2).

IV. CONCLUSION
Three different NN algorithms have been compared for their elec-
trical load forecasting efficiencies. A NN model was developed for 
energy demand prediction on power systems, and the Levenberg–
Marquardt, gradient descent, and gradient descent with momen-
tum and adaptive learning rate algorithms were used to train the 
model. The training inputs were prior loads, weather parameters 
(temperature, relative humidity, and population), and population 
of the supplied region. From the correlation study of the inputs, it 
is found that the temperature has a positive correlation of 0.3606, 
implying that an increase in the temperature will lead to increase 

in electrical load in the supplied region. In addition, relative 
humidity, precipitation, and population have a negative correla-
tion of –0.3458, –0.4394, and –0.2533 respectively. The correla-
tion of the population shows that an increase in population does 
not translate to an increase in electrical load in the region under 
study. The accuracy of the prediction was appraised using MAE 
and MSE as evaluation indices; and the algorithm with the least 
index values was considered the best. Levenberg–Marquardt was 
found to be the most efficient technique, and was recommended 

Fig. 11. Gradient descent algorithm with momentum and adaptive learning rate regression plots.

Fig. 12. Evaluation of the algorithms during training.

Fig. 13. Target load, output load, and errors using the Levenberg–
Marquardt algorithm.
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for adequate and proper system management, planning, and 
expansion, to enhance the efficiency, effectiveness, and accessibil-
ity of power supply.
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ABSTRACT

The recent developments in permanent magnet technology and its increased usage in areas involving brushless direct current (BLDC) motors have increased 
the interest in this motor type. In the study, a 24/8 pole 3 kW brushless direct current motor was designed, simulations were carried out using the finite ele-
ment analysis (FEA) method, and an optimization study was carried out using the shifted Hammersley sampling method. Efforts were made to improve the 
torque ripple and back electromotive force (EMF) values originating from the permanent magnet and the motor design in the BLDC motors. The efficiency 
of the shifted Hammersley method was validated by the experimental study. The designed BLDC is suitable for applications over a wide range of speeds. The 
experimental and optimization results both showed that the back EMF harmonics and torque ripples of the BLDC motor under load condition were reduced.

Index Terms––Brushless motor, Hammersley sampling, optimization, torque ripple.

NOMENCLATURE

CS, CPM, CR, CW Cost of magnetic steel, Cost of magnet material, Cost of rotor steel, Cost of copper ($)

di, do, Ts, P Stator inner radius, Stator outer radius, Stator length (mm), Number of pole pairs

Wt, Wsb, Wsh, Ws Tooth width inside radius, Shoe width inside radius, Slot width inside radius, Slot opening width inside radius (mm)

ρs, ρR, ρPM Stator steel density, Rotor steel density, Magnet material density (kg/m3)

Nph, Nc, Ns, Nsp, Np Phase number, Number of conductors per slot, Number of stator slots, Number of slots/poles/phases, Number of 
parallel circuits per phase

Pn, Usef, Rs, Ls, Jm, φ Rated power (W), RMS voltage in stator (V), Resistance in stator (Ohm), Inductance in stator (H), PMSG inertia moment 
(kg·m2), Induced magnetic flux (Weber)

ds, Lm, Tm, τm, trs Required slot depth, Mean length per turn, Magnet axial thickness, Magnet spacer thickness, Rotor steel thickness (mm)

dsh, d1, d2, tr, ks Shaft diameter (mm), Stator slot wedge depth (mm), Stator slot tip depth, Number of wires per square, Lamination 
stacking factor

WTotal, WW, WS, WR, WPM Total active material weight, Wire weight, Stator weight, Rotor weight Magnet weight (kg)

Wl, rrb, rri, Nm, Nw Wire length (mm), rotor yoke outer radius (mm), rotor inner radius (mm), Number of magnets, Number of wires

I. INTRODUCTION
A. Motivation
Brushless direct current motors typically have 85–90% efficiency, 
whereas brushed motors are typically 75–80% efficient. Brushes wear 

down over time, resulting in hazardous sparking and reduction in the 
lifespan of brushed motors. The BLDC motors are quieter, lighter, and 
last considerably longer than the traditional DC motors. Brushless 
direct current motors are frequently employed in modern electronics 
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since they generate low noise and low heat; hence, they are particularly 
suitable for systems that operate continuously. They might potentially 
be the primary source of power for service robots, which necessitate 
meticulous force management for safety reasons. Brushless motors 
require far less maintenance than brushed motors. The brushes must 
be cleaned often, making them unsuitable for use in many fields includ-
ing medicine. Brushless motors also have the advantage of being able 
to reach higher torques. Brushes generate friction, which slows down 
the motor; however, BLDC motors do not have this problem. All these 
factors necessitate further developments in this type of motor.

B. Literature Review
Brushless direct current motors can produce high torque at low 
speeds, which is preferred in many applications today [1-7]. 
Meanwhile, the characteristics of these types of applications relate 
to several parameters which include, but are not limited to cost, effi-
ciency, and ease of control. The optimization of industrial motors is 
very important because it directly affects their efficiency and cost. 
The performance and disturbing effects are also directly affected by 
the design. There are many studies in the literature regarding the 
design and optimization of this type of motor [8-17], some of which 
focus on optimizing the machine’s geometric dimensions [18-21], 
while the others concern control [22-25]. In the literature, a BLDC 
motor consists of a stator core and windings, rotor and permanent 
magnets, and a shaft [26]. Fig. 1 shows the initial cross-sectional 
view of the geometry of the designed BLDC motor.

Many types of motor structures have been designed in previous 
studies [27-33]. The optimization objectives and functions of the 
BLDC motor developed are presented in the paper, between (1) and 
(9). Some researchers have used different optimization techniques 
for weight reduction or harmonics elimination [34]. Some other 
researchers have investigated the optimization of the back EMF 
waveform and the microcontroller-based sensorless BLDC motor 
drive, with respect to winding configurations and torque ripple 
reduction, respectively [35]. There are many methods and algorithms 
for the design and optimization of permanent magnet machines in 
the literature [36, 37]. Some researchers have searched for a solu-
tion with a single objective function, while others have searched for 
a solution with two or more objective functions [38, 39]. The main 
purpose here is to present a design where maximum efficiency can 
be obtained with minimum cost and minimal running problems. 
However, some undesirable effects arise from the permanent mag-
net in this type of motor, for example, the torque ripple and back 

EMF harmonics. Many studies in the literature have tried to reduce 
these disturbing effects [40].

The literature clearly reveals that some of the techniques used in the 
optimization of these types of motors are quasi-Newton, nonlinear 
programming, sequential programming, and genetic and hybrid algo-
rithms [41]. These optimization algorithms seek results to improve one 
or more objective functions within certain constraints. Torque ripple 
occurs as part of the interaction between the magneto-motive force 
and the air-gap flux harmonics [42], and its value is directly affected by 
the permanent magnet angle, number of poles and slots, pole embrace, 
pole shape, pole offset, magnet thickness, air-gap length, and skewing. 

C. Contribution
In this study, optimization studies were conducted using the shifted 
Hammersley sampling method and finite element analysis (FEA). The 
comparison between the experimental results and other results has 
been presented in the study. Thanks to the optimization technique 
used, there has been a decrease in torque ripples. The study presents 
the design of a BLDC motor, the cost, weight, and volume equations 
to be used in the optimization function, and the optimization results. 
The experimental studies have been discussed in a separate section.

II. DESIGN OF A BLDC MOTOR
The designing of BLDC motors involves highly complex processes [6]. 
In this section, the basic motor design parameters are discussed. 
One of the main purposes of the study is to reduce the cost of the 
motor. To achieve this, it is necessary to actively reduce the amount 
of material used, without reducing the efficiency. For this, it is neces-
sary to create a suitable design model within the ideal solution set.

The optimized motor has reached the desired voltages and currents 
under load. This shows that when the motor is under load, phase 
current reaches 50 A, so it is under the maximum loaded current. 
The winding pattern of the motor is aimed at achieving a reduc-
tion to the third harmonic. The winding is designed for short pitch 
and not full pitch, due to its reduction of the harmonic content 
in the motor. Due to the short pitch and the distributed winding, 
the main wave and harmonics are slightly decreased, as seen in  

Fig. 1. Brushless direct current motor designed in the study.

Main Points

•	 Optimization and prototyping of a BLDC motor for torque 
ripple reduction using the shifted Hammersley sampling 
method were carried out and experimental results were 
obtained.

•	 A back EMF sensing circuit was developed and applied for BLDC.
•	 Torque ripple reduction was achieved by structural design 

optimization.
•	 An experimental test system was established for the loaded 

and unloaded states of the BLDC motor.
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Fig. 2. The diagram illustrates the slot star as the phasor, which will 
be the induced voltage in each of the slots. When coils are delivered 
to the slots, the voltages of the distributed coils are taken as the sum 
of the slot star phasors from the winding ends.

In the motor design, the air-gap originating from the permanent 
magnets has been designed to reduce magnetic flux harmonics. The 
design is presented in Fig. 2. Here, thanks to this winding design, the 
torque ripple and harmonics have been decreased. A double layer 
and short-pitched winding have been used in the motor.

Fig. 3 presents the mapping of induction levels in order to verify that 
the ferromagnetic parts are not too saturated. It can be seen that the 
saturation level is acceptable for this full-load operation. Saturations 
above two Tesla are solely in some local areas such as the saturation 
bridges and at the ends of the magnets and teeth. A 1/8 model of 
the motor is used in the simulation due to the motor pole symmetry.

The graph of the total motor volume and the change in iron and cop-
per losses are presented in Fig. 4. The high rate of increase in the total 
volume directly increases the copper losses significantly. The results 
deserve some comments. First, it can be remarked that at the expense 
of the average coupling, it is possible to improve all other parameters, 
both at low speed and at high speed, as in in Fig. 4. Thus, the author 
succeeds in reducing all back EMF harmonics at low and high speeds. 
In addition, the third harmonic is always at a low value regardless of 
the speed, which is very advantageous for having coupling risk of zero-
sequence currents as delta configuration [33]. Thus, the zero-sequence 
current would be much lower than for the original machine and 

additional copper losses will be reduced. Regarding the joule losses, 
values are greatly reduced at low speed and slightly at high speed. 
The iron losses directly depend on the machine size. Therefore, this 
machine will provide a higher efficiency than the original motor.

III. OPTIMIZATION OF BLDC
The purpose of the process described in this section is to minimize the 
fundamental of the back EMF induced. This criterion is very important 
for security constraints (safety requirements). Indeed, in case of loss 
of control at high speed, it is necessary to have a low value of the to 
avoid fundamental electrical arcing effects. Optimization is realized for 
one operating point, which is at 1500 rpm. The number of iterations 
is nine, with a total duration of about 111 seconds. Performances are 
presented in Fig. 8 and 9. The improvements and degradations intro-
duced by optimization are illustrated in green and red respectively. 
Regarding the results, it can be said that the optimization process is 
very fast and the results converge rapidly. Moreover, the objective––in 
terms of reduction of the fundamental back EMF––is achieved with 
a decrease of over 16 per cent compared to the initial machine. For 
some other values, we also notice improvements such as volume, 
joule losses at 1500 rpm, and harmonics, which are lower. However, 
it may be noted that at 3000 rpm, the performance is worse than that 
initially for harmonics values and losses. This is because the optimi-
zation has taken into account only the operating point at low speed. 
Thus, the performances of this operating point are at the best value 
but can be at the expense of high-speed operations. To overcome 
this result, it is necessary to optimize at least two operating points. 
Besides, it would be interesting to optimize not just one objective but 
several objectives, in order to achieve a better compromise between 

Fig. 2. Winding pattern of PM brushless DC motor. (a) Representation of slots and coil-sides. (b) Coil distribution in slots. (c) Representation of  
slot star.
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two conflicting objectives [33-35]. Therefore, the next section pro-
poses multi-objective optimization, taking into account the two oper-
ating points (low and high speed).

The performance of the 24/8 machine on two operating points has 
been optimized, namely, at 1,500 rpm and 3000 rpm. These two 
end points allow optimization to converge to optimal solutions 
over the entire operating range. Since the model simulates two 
operating points, the computation time of the Jacobian matrix 
is longer (4.2 seconds + 15.7 seconds, or about 20 seconds per 
iteration).

The goal in this optimization will be threefold: (1) Minimizing the volume 
of the machine; (2) minimizing the joule losses; and (3) significantly lim-
iting back EMF harmonics for the two operating points. To do this, the 
author performed a weighted analysis (with the same coefficients) of 
the two objectives––to minimize the weight and joule losses––and also 
constrained the values of the back EMF harmonics in order to maintain 
them under 15% of the fundamental value. In this case, the number of 
iterations was 13, with a total duration of about 220 seconds. 

An examination of the motor geometry clearly shows that the stator 
consists of stator teeth and stator yoke:

Fig. 3. Mapping of induction levels of 24/8 optimized machine.

Fig. 4. Results of iron losses, copper losses, and machine volume.
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By calculating the stator teeth volume and stator yoke volume, the 
total stator volume can be calculated. Equations 1 and 2 represent 
stator teeth volume and stator yoke volume, respectively:

	 Stator iron volume � � �V V Vs t b 	  (3)

	 Weight of stator � �W Vs s s2 � 	  (4)

Equations 3 and 4 represent the stator iron volume and weight of the 
stator, respectively. Equation 5 expresses the magnet weight of the 
motor. Equations 6 and 7 represent the rotor steel weight and wire 
weight, respectively:
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Here, the total active material weight and total cost function can 
be found using (1)–(7). Equations 8 and 9 represent the total active 
material weight and total active material cost, respectively:

	 Total activematerialweight Total� � � � �W W W W WS PM W R 	  (8)

 Total activematerial cost Total� � � � �C W C W C W C W CS S PM PM W W R R 	 (9)

A. Shifted Hammersley Sampling Method
The screening (shifted Hammersley sampling) calculation is utilized 
for pattern creation [7]. The customary Hammersley sampling cal-
culation is a semi arbitrary number generator, which has extremely 
low inconsistency and is utilized for semi Monte Carlo re-enactments 
[11]. A low-error arrangement is characterized as a succession of 
foci that estimate the equidistrubution in a multi-dimensional solid 
shape in an ideal manner. This implies that the designing space is 
populated consistently by these arrangements and that dimension-
ality is not an issue in light of the innate properties of Monte Carlo 
sampling. The number of foci does not increase dramatically with 
an expansion in the quantity of information boundaries. The regular 
Hammersley examining calculation is built by utilizing the extreme 
reverse capacity.

The total active material weight and total active material cost are 
our optimization goal functions. These functions consist of weight 
of stator, weight of rotor, weight of wire, and weight of magnet. 
The main purpose in using these functions includes the geometri-
cal dimension parameters of motors, especially magnet shape. The 
most common methods are random or regular sampling. However, 
these may provide unwanted noisy results, which is why we have 
used the Hammersley calculation, to yield smoother and noiseless 
results. Hammersley mapping points provide uniformly distributed 
vectors. These vectors lead to better results from other techniques. 
The implementation of this technique obviously depends on the 
approximation method of the selected goal functions. If the param-
eters of goal functions include wide ranges of noise and the input 
parameters are too complex, then the selected method needs a large 
number of samples to obtain reliable results. Therefore, we should 
choose the objective functions according to the parameter to be 
increased or decreased, and avoid large sampling. This study aimed 
to reduce torque ripples; for this, the total active weight––includ-
ing magnet parameters––was chosen as one of the main objective 
functions.

Mlg is magnet width in Fig. 5. The initial geometry has an Mlg of 
18.8 mm; after the optimization process, Mlg is 16 mm. This will 
directly affect the machine volume and machine weight. Mlg is used 
for the optimization parameters in the optimization process. 

Fig. 5. Geometry presentation of motor. (a) Initial geometry. (b) Optimized geometry.
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IV. EXPERIMENTAL STUDY OF BLDC
Based on given the geometric and material characteristics, the per-
formances of a designed BLDC are analyzed. Loaded and unloaded 
situations are tested under different motor speeds, at 1500 rpm and 
3000 rpm. The experimental study set up and measurement system 
set up have been presented in Fig. 6 (a) and (b) respectively.

The LA-25 current transducer was used for current measure-
ment in the system. The rating of the designed motor was 3 kW, 
48 V, 50 A, and 3000 rpm. A variable voltage source fed the test sys-
tem. The electromagnetic load allowed up to 20 Nm. The EXTECH 
P03350 three-phase power and harmonic analyzer were used for 
measuring harmonics. Back EMF was measured with the ST7MC 
microcontroller, which is shown in Fig. 7. In Fig. 7, the values of the 
resistors are R4 = 16 kΩ, R5 = 16 kΩ, R6 = 16 kΩ, R7 = 240 kΩ, 
R8 = 18 kΩ, R9 = 12 kΩ, R4a = 100 kΩ, R4b = 100 kΩ, R4c = 100 kΩ, 
R5a = 100 kΩ, R5b = 100 kΩ, and R5c = 100 kΩ, respectively.

The designed current, torque, voltage, and back EMF, and the har-
monics circuit scheme and its implementation have been presented 
in Fig. 6 and 7, respectively.

Fig. 6. Experimental study set up representation. (a) General experimental system. (b) Measurement equipment.

Fig. 7. Back EMF sensing scheme. EMF, electromotor force.
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V. RESULTS AND DISCUSSION
The results of the optimization, simulation, and experimental test are 
presented in this section. All values are compared with each other 
and the results are discussed. Torque ripple reduction is obtained 
under different speeds, at 1500 rpm and 3000 rpm.

The flux harmonics consist mainly of third, fifth, seventh and eleventh 
harmonics. The optimized results, both 1500 rpm and 3000 rpm, are 
better than FEA. However, the experimental study shows that the 
obtained torque ripple value is very close to the optimized results, 

and the main difference is only approximately 1.42%. When the 
motor speed is increased to 3000 rpm, main torque ripple difference 
is decreased, at 1.19%, as seen in Fig. 8.

Note that Hn designates the nth order harmonic of the output 
parameter. The torque of the BLDC motor is strongly affected by 
back EMFs and phase current waveforms [35]. The first is the main 
wave of EMF. The third, fifth, and seventh are back EMF harmonics. 
The fifth is the biggest measured harmonic in the motor, as shown 
in Fig. 9.

Fig. 8. Torque ripple reduction in BLDC motor. (a) At 1500 rpm. (b) At 3000 rpm. BLDC, brushless direct current.

Fig. 9. Comparison of back EMF FEA, optimization, and experimental results. (a) FEA and experimental results. (b) Experimental and optimization 
results. EMF, electromotor force; FEA, finite element analysis.
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The results show that the optimized and experimental study has 
achieved very close numerical values, but the FEA result is a very 
high value, except for the main wave. Particularly, the fifth and third 
are bigger than in the experimental study.

It can be seen in Fig. 10 that the third is lower than the fifth, because 
the third harmonic is reduced with the winding technique applied 
while designing the motor. Nevertheless, the fifth harmonic contin-
ues to have the highest effect on torque ripples.

The reliability of the results is verified between the simulation and 
experiment in Fig. 11. Fig. 11(b) and (d) show the back EMF wave-
form (main wave) under loaded conditions. The impacts of the mag-
nets on the back EMF voltage can be seen from these waveforms. 
The back EMF waveform is shown in Fig. 11(a) and (c). The measured 
back EMF waveform and simulation results have been compared in 
Fig. 11. The comparison shows a close match. 

The main purpose of this motor design and the optimization process 
is to provide decreased torque ripple for industrial applications. To 
achieve this goal, back EMF-induced torque formations in the motor 
should also be examined. For this, a special measuring circuit has 
been designed and implemented. Torque values at different motor 
speeds were obtained. The results of the FEA and the experimental 
results were compared with each other. In the phase harmonic val-
ues measured, some non-reducible effects remain, apart from the 
design-induced reduction effects.

Finally, the results have demonstrated the powerful side of the 
methodology used for the optimization based on RN modeling. The 
results have been obtained with good accuracy, since the optimiza-
tions have been taken place within a few minutes. Moreover, the 
methodology has the advantage of being generic. It is relatively 

easy to change the patterns of the stator and rotor reluctances to 
optimize with different technological choices. For optimal results, 
future works have to include finer RN models in order to obtain 
better resolution and results that are closer to FEA. Likewise, opti-
mization has to be performed on more operating points for optimal 
solutions that are valid for the entire operating range. Lastly, the 
inclusion of the calculation for mechanical losses and constraints, 
heat losses through a nodal model, and ventilation losses will help 
designer to obtain much more realistic results with such multi-
physics models.

VI. CONCLUSION
The optimization, prototyping, and analysis of BLDC motors were 
performed using Hammersley sampling. In addition, experimental 
verification was provided via a laboratory setup. The FEA simula-
tions, optimization results, and experimental results are compared. 
The comparison shows a close match.

In a first step, the machine 24/8 was optimized on an operating point 
at low speed. These first results have given better performance com-
pared to the initial machine. However, given that the optimization 
takes place only for a single operating point, the other operating 
points have been degraded. Therefore, in a second step, another 
optimization, taking into account two operating points (low speed 
and high speed), was performed. In this case, the optimal machine 
furnished much higher performances on most criteria.

A back EMF measurement card was designed and used to mea-
sure in the experimental studies. FEA simulations were performed 
with Ansys, using a static magnetic module. The results obtained 
in the measurements were compared with the simulation results, 
and it was observed that the torque ripples were reduced after the 
Hammersley method optimization.

Fig. 10. Back EMF harmonics at 3000 rpm and comparison of FEA, optimized geometry, and experimental study. (a) Experimental FEA. 
(b) Experimental FEA in optimized geometry. EMF, electromotor force; FEA, finite element analysis.
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ABSTRACT

This paper provides a comprehensive review of the studies on electricity energy forecasting for Turkey during the years between 2003 and 2020. The review 
analyzes the forecasting studies in terms of the methods that are applied for forecasting, the profiles of the researchers and their institutions, and the years 
and location information about the data for which the forecasting is implemented. The search that is presented in this paper covers almost all related works 
that are published in the literature. Forecasting of electricity energy has been always a tool for energy demand–supply planning and has become indispensable 
due to increasing needs for the prediction of electricity production and consumption in the management of smart grid systems. Therefore, development of 
competencies in electricity energy forecasting is a must for all nationwide actors who have responsibilities in the management of smart grids. This paper may be 
used to identify the already developed competencies in electricity energy forecasting by the individual researchers on their own, and the institutions of Turkey. 
Thus, it may constitute a base for future works to build up new competency centers to meet Turkey’s need on short-, medium-, and long-term forecasting of 
electricity production and consumption.

Index Terms—Turkish electricity market, machine learning, statistical methods, electricity forecasting.

I. INTRODUCTION
Electricity has special properties, from generation to consumption. It 
needs to be maintained at a constant balance between demand and 
supply, and it is non-storable. Therefore, consumption forecasting 
is obligatory for electricity generation. The Ministry of Energy and 
Natural Resources (MENR) accomplished some forecasting studies 
by using simple methodologies during the late 1970s. The milestone 
of energy estimation related to future demands and energy planning 
was the introduction of the simulation models by the State Planning 
Organization (SPO) and the MENR in 1984. Energy marketing studies 
were started at the beginning of the 2000s. Fig. 1 shows the histori-
cal development of energy marketing in Turkey [1]. After that, from 
January 1, 2016, all hourly generation and consumption data began 
to be published on an official web page of Turkish Energy Exchange 
Company (EPİAŞ), which is called the Transparency Platform. 

After energy marketing was established in Turkey, data on the day-
ahead and intra-day matching amounts were published daily on the 
web page of the EPİAŞ. In the electricity market, there are three 
major parts, which are the bilateral contracts, the day-ahead market, 
and the intra-day market. Bilateral contracts cover more than half of 

the annual electricity generation. Since the amount of electricity gen-
erated and its price are certain in bilateral contracts, matching of the 
day-ahead market is a major concern for authorities. Table I shows 
the total consumption and the matching amount of day-ahead and 
intra-day as annually in TWh and percent of total consumption, from 
2017 to 2020 [1]. Approximately half of the annual consumption was 
matched at the day-ahead market in the first years of energy market-
ing, and last year, this rate was more than 60%. Thus, it can be seen 
from the data in Table I that true forecasting of the consumption 
amount is very important. 

Load estimation models can be divided into four groups: very short-
term, short-term, medium-term, and long-term forecasts. While 
very short-term load estimates cover from a few seconds to a day, 
short-term load estimates are estimates extend up to 2 weeks. 
Similarly, medium-term forecasting estimates cover between a week 
and year, and the result of long-term forecasting gives estimates for 
more than a year [2]. In order to form the energy production plan, 
load estimates can be made short-term, such as an hour or a week 
later, or they can be made on a long-term, annual, or seasonal basis 
to direct investments.
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This study is a review of the articles on research done on forecast-
ing the electric energy consumption and its price in Turkey between 
the years 2003 and 2020. In section 2 of the paper, the profiles of all 
the articles are detailed with respect to information on the distribu-
tion of the university, organization, profession of the authors, year 
of publication, etc. The forecasting methods are given in section 3, 
while the data analyses are introduced in section 4. Finally, conclu-
sions are drawn in the last section. 

II. FORECASTING STUDY PROFILES
First, the number of articles published each year is obtained, shown 
in Fig. 2. There is a noticeable increase in the number of papers after 
the EPİAŞ obtained a market operation license and the data were 
made publicly available on the Transparency Platform in 2016.

Another classification is made with respect to the disciplines in which 
the authors hold bachelor’s degrees. There are only three papers 
written by the researchers from the social departments, while the 
others belong to engineering. The distribution can be seen in Fig. 3. 
It is clear that the most of the researchers are electrical and electron-
ics engineers.

There are 96 authors in all, and 85 of them have published only one 
paper on forecasting of energy consumption. Eight of them have 

published two papers, while only three authors have three research 
papers to their credit. The number of papers authored is shown in 
Fig. 4. This means that very few authors have continued their studies 
on this subject. 

There are 201 universities in Turkey, and 131 of them are the state 
universities. The forecasting studies of electrical energy consump-
tion covered in this review have been conducted in the 14 universi-
ties located in the three largest cities and in the 18 universities at 
Anatolia. The distribution of the papers with respect to the universi-
ties is given in Table II. There are three papers written by the gov-
ernment departments related to energy, such as the Energy Market 
Regulatory Authority (EMRA), the General Directorate of Energy 
Affairs, the Electricity Generation Company (EGC), and TÜBİTAK. 

III. OVERVIEW OF FORECASTING METHODS
Forecasting is an important problem involving the prediction of 
events for certain time periods, such as hours, days, or years, by 
identifying and constructing a model examining the history of the 
data. The phases of forecasting are problem definition, data collec-
tion, data analysis, model selection and fitting, model validation, 
forecasting, and monitoring model performance [3].

The data are usually available as a time series in the form of 
Y y y yN� �� ��1 2  sampled at N  time instants, where the measure-
ments yi d∈  and d are the number of observed variables. The 
time series is considered as univariate if d = 1, otherwise it is called 
as multivariate. Assuming the univariate case, in one-step-ahead 
prediction, the kth value of the series is predicted using previous 
observations as in (1):

	 y f y yk k k� �� �� �1 2, , 	 (1)

In m-step-ahead forecasting, the predicted value is m-step advance 
of the current value. One way of multi-step-ahead prediction is to 
use m one-step-ahead predictors, and another way is to create a 
model directly to estimate yk  as in (2):

Main Points

•	 Electricity forecasting is crucial for plans and strategies in 
energy production.

•	 The competencies in electricity energy forecasting should be 
identified nationwide.

•	 This paper summarizes the author and institution profiles, 
forecasting methods, and data collection for Turkey after 
2003.

•	 In addition, useful interpretations are made on trend, moti-
vation, and continuity of the studies.

Fig. 1. Milestones of the development of energy markets.
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	 y f y yk k m k m� �� �� � �, ,1 	 (2)

To evaluate the performance of the forecast algorithm, several error 
criteria are used. The absolute error is defined as

	 AE y yk k
Target

k
Predicted� � 	 (3)

where ykTarget  is the actual measurement value and yk Predicted  is the 
output of the forecasting algorithm. Suppose that there are n obser-
vations for k n� �1 2, , , . Then the average error or mean absolute 
error can be calculated as

	 MAE
n

AE
k

n

k�
�
�1
1

. 	 (4)

MAE measures the variability of the forecast error. Since the 
range of the forecasting variable is varied, to compare the per-
formance of the forecasting algorithms applied to different data, 
another type of measure is needed. To solve this issue, a relative 
error measure, the Mean Absolute Percentage Error (MAPE) is 
defined as 
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assuming that there are no zero values in the time series. Another 
criterion which measures the fitting performance of the model with 
the actual observations is R-squared statistics 
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where y  is the mean value of the target vector [3].

TABLE I  
ELECTRICITY-RELATED DATA AFTER THE ENERGY MARKET WAS ESTABLISHED

Year Installed Capacity Consumption Day-Ahead Matching Quantity % Intra-day Matching Quantity %

2017 85 200 MW 296.7 TWh 123.32 TWh 41.56 1.72 TWh 0.58

2018 88 526 MW 300.1 TWh 149.39 TWh 49.78 2.93 TWh 0.98

2019 91 267 MW 280.49 TWh 152.12 TWh 54.23 5.45 TWh 1.94

2020 95 891 MW 290.93 TWh 181.36 TWh 62.33 6.88 TWh 2.36

Fig. 2. The published year distributions of the papers.

Fig. 3. The professions of the authors distributions of the articles.

Fig. 4. The distributions of how many articles written by per authors.
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The load/demand forecasting methods can be mainly divided into 
two categories, statistical techniques and machine learning algo-
rithms. However, the distinction between the two types is not clear 
since there are several studies which combine both to obtain hybrid 
models. 

The main statistical techniques are regression methods such as lin-
ear regression (LR) [4] and multiple linear regression (MLR) [5], sup-
port vector regression (SVR) [6], auto-regressive and moving average 
(ARMA) models, and their variants such as seasonal autoregressive 
integrated moving average (SARIMA) [7-12], exponential smoothing 
models [13], and grey box models [14-17]. Autoregressive models 
estimate the parameters of the ARMA model including auto-regres-
sion and moving average polynomial coefficients. In nonstationary 
time series cases as in load forecasting, the auto-regressive inte-
grated moving average (ARIMA) model provides a more appropri-
ate solution since it removes the trend from the data. Moreover, 
electricity consumption data has seasonal dependencies. Thus, sea-
sonal ARIMA, that is SARIMA, was proposed to represent data more 
accurately.

Machine learning methods include artificial neural networks [18-32], 
fuzzy logic algorithms [33, 34], swarm intelligence methods [35-38] 

and recursive methods such as recurrent neural networks (RNN) [39, 
40], gated recurrent unit (GRU) [41], and long short-term memory 
(LSTM) [42, 43]. In traditional machine learning approaches such 
as multilayer perceptron (MLP) with backpropagation learning and 
SVM, the data set is analyzed and features describing the data in 
a lower dimensional space are extracted. Then the dependencies 
between features are discarded, and the best features are selected 
with methods such as principal component analysis or optimiza-
tion algorithms like genetic algorithms. Finally, a prediction is made 
based on these features. Since machine learning approaches can 
learn the interrelationships of features and the output, successful 
forecast results were obtained for both short-term, medium-term, 
and long-term studies.

The challenge in traditional machine learning algorithms is that the 
performance of the forecast algorithm depends on the selection of 
suitable features. A solution is to use representation learning meth-
ods such as those employing deep learning models that learn, in 
some sense, the representative features in the first layers of their 
multilayer architecture. These algorithms learn from data when even 
the raw time series data is applied as the input. Recursive methods 
such as RNN, GRU, and LSTM are efficient forecasting tools since they 
extract the information from long time series.

TABLE II  
AUTHORING INSTITUTIONS OF THE RESEARCHES

University/Organization (Alphabetic Order) Number of Papers University/Organization (Alphabetic Order) Number of Papers

Anadolu University 1 İstanbul Ticaret University 1

Ankara University 3 Karadeniz Teknik University 2

Aksaray University 1 Karaelmas University 1

Özyeğin University 1 Kırıkkale University 1

Bilecik Şeyh Edebali University 1 Kadir Has University 2

Bülent Ecevit University 1 Kocaeli University 1

Cumhuriyet University 1 Military Academy 1

Düzce University 1 Marmara University 1

Erzurum University 1 Muğla Sıtkı Koçman University 1

Erciyes University 2 Necmettin Erbakan University 1

EMRA 1 Niğde University 1

EGC 1 Orta Doğu Teknik University 3

Gazi University 4 Pamukkale University 2

Gebze Teknik University 1 Selçuk University 3

General Directorate of Energy Affairs 1 TÜBİTAK 1

Ege University 1 Ondokuz Mayıs University 1

İstanbul Bilgi University 1 Yaşar University 1

İstanbul Teknik University 4 Yıldız Teknik University 2
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When the major electricity forecast studies for Turkey are exam-
ined from 2003 to 2020, it is observed that 57% of the studies use 
machine learning methods. The statistical methods are the second 
group, with 32%. The other studies mentioned in this paper use 
methods such as empirical models, Fourier methods, surface fitting, 
and Mittag-Leffler functions. The ratio of all methods is summarized 
in Fig. 5.

Let us consider the studies under consideration in detail. In Topalli 
and Erkmen [39], the models based on recursive MLP for forecast-
ing were used in a hybrid learning scheme. The load values of year 
2000 were used for offline training of the network, with random ini-
tial weights. Then, the trained network weights were updated dur-
ing the online training phase with new data from 2001. Thus, the 
network adapts to the real-time changes and convergence time is 
reduced. In another study, an Elman’s recurrent neural network 
model was employed [40]. Topallı et al. [40] a hybrid learning process 
combining offline training and online updating. They also analyzed 
the effect of seasons, day of the week and special days, and added a 
correction term to the forecast, which produces a reduced error rate 
compared to the ARMA structure. 

A long-term forecast study uses total power consumption for 
Turkey starting from 1970, and predicts the yearly load by using 
artificial neural networks [18]. The performances of two models 
such as the backpropagation network and the radial basis network 
were compared with the regression networks. It is observed that 
the neural network techniques outperform regression methods for 
this study. 

In another study, Yalçınöz and Eminoğlu predicted the peak load 
of the day, a total load of the day, and monthly electricity consumption 
using MLP, using temperature and load values for Niğde [19].

Kavaklıoğlu et al. [20] modeled electricity consumption with MLP as 
a function of economic indicators such as population, gross national 
product (GNP), imports and exports, and time.

In another study, forecasting performances of the Adaptive Network 
Based Fuzzy Inference (ANFIS) and the ARMA model [33] were ana-
lyzed. The data of GNP, population, energy produced and consumed, 
and installed capacity for the years 1970–2007 were used to predict 
energy demands from 2006 to 2010. 

In Kaytez  et  al. [21], backpropagation networks were compared 
with Elman’s recurrent neural network to forecast yearly electric-
ity consumption. They showed that when social and economic 
factors such as GNP, gross domestic product (GDP), population, 
number of trade holds, Index of Industrial Production, and crude 
oil prices, along with electricity consumption with price as fea-
tures, neural network techniques succeed in forecasting better 
than the model analysis of energy demand (MAED) of MENR. 
Moreover, the error rate of RNN was obtained as lower than that 
of MLP. 

Kuçukali and Bariş [34] predicted annual demand by using only GNP. 
They showed that the fuzzy logic approach outperforms regression 
and MENR. 

Fig. 5. Overview of the forecasting methods.
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A swarm intelligence application of electricity demand forecast was 
made based on socio-economic indicators of GDP, population, import 
and export from 1979 to 2006 [35]. Artificial bee colony (ABC) and 
ant colony optimization (ACO) approaches were used for forecasting 
the annual demand.

In another study [32], the nonlinear autoregressive artificial neural 
network (NARANN) model and the seasonal autoregressive iterative 
moving average (SARIMA) method were employed to estimate future 
independent factors. Monthly data of gross production, imports, 
transmitted energy and export were determined as independent fac-
tors. Then, LASSO-based ADaptive Evolutionary Simulated annealing 
(LADES) and Ridge-based ADaptive Evolutionary Simulated anneal-
ing (RADES) models were applied to forecast the future electricity 
consumption. 

The least squares-SVM (LS-SVM) method was compared with MLP 
for forecasting yearly consumption. Data on installed capacity, gross 
electricity generation, population, and total subscribership data 
were used for analysis in Kaytez et al. [22].

Kölmek and Navruz [23] predicted the day-ahead price for the 
Turkish market with MLP using historical load data, available capacity 
information (nuclear, thermal, hydro, etc.), forecast load/demand, 
temperature, the settlement period, day code, season code, and his-
torical prices. They showed that MLP with the Levenberg–Marquardt 
learning algorithm generates better MAPE than the ARIMA model 
on average.

Another swarm intelligence study used a hybrid method of ACO and 
iterated local search (ILS) for estimating domestic electricity con-
sumption [36]. 

The annual gross electricity demand of Turkey was modeled by using 
some socio-economic indicators such as population, GDP per capita, 
inflation percentage, unemployment percentage, average summer 
temperature, and average winter temperature [24]. MLP was used 
as the forecast method and it was shown that it outperforms the 
MLR model. 

Table III summarizes the methods, data, and performances of the 
forecasting studies using artificial intelligence algorithms between 
the years 2003 and 2016. 

When machine learning algorithms used for forecasting after the 
year 2017 are considered, it is seen that Bozkurt  et  al. [25] com-
pared the forecasting performance of SARIMA and MLP models. To 
train models, the data on load, electricity price, and weather were 
collected at hourly intervals and the USD/TRY exchange rates at 
monthly intervals, for 2 years. They analyzed the performance of the 
systems when the model was trained with 1, 3, 6, and 12 months, 
with selected features from the whole set. The forecast was made 
for 1 week. They observed that MLP is more successful than SARIMA, 
and the success rate depends highly on whether the day is a national/
religious holiday or not.

In Sonmez et al. [37], the ABC model was used to forecast annual 
transportation energy demand using data on GNP, population, 
and annual vehicle-kilometers. They showed that the linear model 
performs slightly better than quadratic and exponential models. 
Another swarm intelligence study was done by Gulcu and Kodaz [38] 
to predict annual electricity demand using data on GDP, population, 
and import and export from 1979 to 2013. They also made a forecast 
until 2030, using the model shown to be successful in the first part 
of their study.

Bulut and Başoğlu [26] proposed a hybrid system based on artificial 
neural networks and rule-based expert systems called EPSIM-NN 
to estimate 24-hour daily demand estimates. They used a neural 
network structure to estimate the daily average consumption and 
24-hour electricity consumption waveform, and then combined 
them. The parameters they used include historical load data, calen-
dar dates, and seasonal and economic indicators. 

In Kocadayı et al. [27], demographic data such as population, building 
area, and import and export data were used as features for MLP, and 
they predicted annual electricity consumption of the TR81 region 
which includes Zonguldak, Karabük and, Bartın, from 2016 to 2020.

Toros and Aydın [28] analyzed how electricity consumptions of the 
12 largest cities of Turkey were affected by social and economic 
variables such as population, cost, and GDP, as well as by climatic 
variables such as temperature and rainfall. They accomplished their 
experiments for the winter and summer seasons separately, since 
the seasonality changes the model parameters.

In another study, the energy consumption of an industrial zone was 
investigated. The historical temperature and consumption data were 
used as input to MLP to forecast energy demand [29]. They com-
pared these estimates with time series predictions made by the 
NARANN model and concluded that temperature as an input to MLP 
carries important information about electricity consumption.

Arslan  et  al. [30] used hourly electricity consumption data of the 
Niğde province for 5 years between 2013 and 2018. Using MLP, they 
forecasted yearly, monthly, weekly and hourly consumption, consid-
ering the effect of different input sizes. 

The LSTM method was used to forecast the electricity price 2 hours-
ahead, using hourly data with 16 variables constructed from lagged 
average price values, calendar date, and some economic variables 
[42]. Authors from the same group used multilayer GRUs for electric-
ity price estimation and compared it with MLP and LSTM [41]. They 
observed that deeper networks with three layers produce better 
results where the GRU-3 network has slightly better performance.

Özkurt et al. [43] forecasted 24-hour electricity consumption for the 
day-ahead market. Hourly electricity consumption for 336 hours 
(2 weeks) was applied as input LSTM. A 36 hours-ahead predic-
tion was made for 24 hours, which is suitable with the day-ahead 
electricity market closing time. It was observed that the error rate 
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TABLE III  
SUMMARY OF MACHINE LEARNING STUDIES IN 2003–2016

Authors Method Data Time Range Features Output Forecast Error

Topalli and Erkmen 
[39]

Recursive MLP 2000 for offline training
2001 for online training and 
test

One-day advance hourly 
load

Hourly load Average percent 
error
10.65% offline
12.96% online

Topallı et al. [40] Elman’s RNN 
ARMA

2001 for offline training
2002 for online training and 
test

Load and temperature Hourly load Average percent 
error
1.60% RNN 
2.33% ARMA 

Hamzaçebi and 
Kutay [18]

MLP 
RBF 
ARIMA 

1970–1990 for training 
1991–1998 for validation
1999–2002 for test

Load in GWh total in years Annual consumption MAPE
2.77% MLP
3.43% RBF
8.69% ARIMA(2,2,0)

Yalçınöz and 
Eminoğlu [19]

MLP 1991–2001 train
2002–2005 different 
intervals for test

Past and current load and 
temperature

Peak and total load of 
day, monthly 
consumption 

Error
3.12% daily
0.47–4.7% peak
2.21% monthly

Kavaklıoğlu et al. 
[20]

MLP 1975–2000 train 
2001–2006 test

Socio-economic indicators Annual consumption Relative RMS error
1.15%

Demirel et al. [33] ANFIS
ARMA 

1970–2007 train
2006–2010 test

Socio-economic indicators Annual demand MAPE
0.47% ANFIS
5.32% ARMA

Çunkaş and Altun 
[21]

MLP
RNN
MAED

1981–2002 training
2003–2007 test

Consumption, price, 
socio-economic indicators

Annual demand MAPE
0.77% RNN
1.53% BP
6.83% MAED

Kuçukali and Barış 
[34]

Fuzzy Logic
Regression

1970–2014 GDP Annual demand MAPE
3.9% Fuzzy
7.3% Regression

Kıran et al. [35] ACO
ABC

1976–2006 Socio-economic indicators Annual demand R2

0.995 ABC
0.98 ACO

Tutun et al. [32] SARIMA and 
NARANN with 
LADES and RADES

1990–2005 for training
2006–2010 for test

Socio-economic indicators Monthly electricity 
consumption

MAPE
1.60% LADES
1.96% RADES

Kaytez et al [22] LS-SVM
MLP

1970–2009
2/3 for train
1/3 for test

Generation and social 
indicators

Annual electricity
consumption

MAPE
1.004% LS-SVM 
1.19% MLP

Kölmek and Navruz 
[23]

MLP
ARIMA

December 1, 2009–
November 9, 2010 
342 days
80 days for test

Historical load/demand, 
capacity, seasonal data 

Day-ahead price MAPE
14.15% MLP 
15.60% MLP

Toksarı [36] ACO 1990–2013 Socio-economic indicators Annual domestic 
consumption

MAPE
3.7% Linear
5.0% Quadratic

Günay [24] MLP 1975–2006 train 
2007–2013 test

Socio-economic indicators Annual gross demand RMSE
5.7%
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of both the LSTM model and EPİAŞ predictions were increased 
because of the COVID-19 pandemic starting in 2020.

Gökgöz and Filiz used MLP for estimating hourly consumption by 
using different learning algorithms such as gradient descent (GD), 
gradient-descent momentum (GDM), the Broyden–Fletcher–
Goldfarb–Shanno algorithm (BFGS), and the Levenberg–Marquardt 
algorithm (LM) [31]. They showed that the LM and BFGS algorithms 
have better forecasts considering MAPE values.

The machine learning studies published from 2017 to 2020 are given 
in Table IV.

Autoregressive models also have successful applications in electric-
ity forecasting. In 2007, Erdogdu [12] developed an ARIMA model 
using quarterly time series data on real electricity prices, real GDP 
per capita, and net electricity consumption per capita for the period 
1984–2004, a total of 84 observations. Then using annual data 
from 1923 to 2004, the demand forecast from 2005 to 2014 was 
implemented. 

Boran [7] forecasted annual net electricity consumption with the 
ARIMA model by using annual time series starting from 1970 to 
2008 with MAPE of 2.58%.

TABLE IV  
SUMMARY OF MACHINE LEARNING STUDIES IN 2017–2020

Authors Method Data Time Range Features Output Forecast Error

Bozkurt et al. [25] SARIMA
MLP

2013–2014
Specific date intervals for train and 
test

Load, price, weather Hourly load MAPE (lowest)
0.98%
1.36%

Sonmez et al. [37] ABC 1970–2013 GDP, population and 
total annual vehicle-
kms

Annual 
transportation 
energy demand

MAPE
11% Linear
12% Quadratic
16% Exponential

Gulcu and Kodaz 
[38]

PSO 1979–2013 Economic indicators Annual energy 
demand

R2

0.99

Başoğlu and Bulut 
[26]

EPSIM-NN 2005–2016
Two weeks test in 2016

Calendar day, holidays, 
historical load data, 
economic factors

Hourly consumption 
for 24 hours

MAPE
1.8% and 1.0%

Kocadayı et al. [27] MLP 2002–2014 train
2016–2020 forecast

Demographic and 
economic indicators

Annual electricity 
consumption

R2

0.91

Aydın and Toros 
[28] 

MLP 2012–2016 intervals Train 
January 2016 winter test 
August 2016 summer test

Historical consumption, 
socio-economic factors, 
weather

Daily and hourly 
consumption

MAPE (daily-hourly)
1.04–1.62% Summer
1.34–1.94% Winter 

Özden and Öztürk 
[29]

MLP
NARANN

2014–2016 (763 days)
70% train, %15 validation
15% test

Historical temperature 
and consumption

Daily R2

0.99 MLP
0.94 NARANN

Arslan et al. [30] MLP September 2018–September 2019 
train
2–14 Sep 2019 test

Lagged consumption 
values in chunks

24-step-ahead 
hourly consumption

MAE 
Min 1.91

Yorulmuş et al. [42] LSTM February 8, 2017–March 31, 2018 
10000 observations
70% train, 10% validation
20% test

Lagged average price, 
date, economical 
factors

Two-hour-ahead 
price

MAPE 
0.24%

Uğurlu et al. [41] MLP
LSTM
GRU

2013–2015 train
356 days of 2016 test

Lagged price values, 
temperature, 
economical factors

24-step-ahead price MAE 
5.36 Euros/MWh 
(GRU-3)

Özkurt et al. [43] LSTM June 2016–July 2020 
915 train-212 test

336-hours lagged 
hourly consumption

36-hours-ahead 
24-hour 
consumption

MAPE
2.72% 2019
4.47% 2020

Gökgöz and Filiz 
[31]

MLP with GD, 
GDM, LM, 
BFGS

January 2012–March 2014 train
March 2014–December 2014 test

Hourly load and 
temperature

Hourly load MAPE
2.18% BFGS 
2.2% LM
>20% GD,GDM
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Akarsu [8] forecasted electricity demand of 21 regions between 
1986 and 2013 using the data of electric distribution companies with 
different AR models.

Uğurlu  et  al. [11] showed that the SARIMA model represents the 
price data better than the other methods, when analysis of variance 
was used as a pre-whitening method for the Turkish day-ahead elec-
tricity market. 

In another study, Kaytez proposed an hybrid LS-SVM and ARIMA 
model for an improved long-term prediction performance [9].  While 
the MAPE for single ARIMA (1, 1, 2) is 2.36%, the hybrid approach 
has 1.00% in the forecasting of annual electricity consumption. 

Akdi et al. [10] compared the ARIMA model with harmonic regres-
sion for daily electric consumption. They concluded that the har-
monic regression performs better when the variable to represent 
has periodicity behavior. 

Grey prediction, inspired from grey box models, assumes that the 
information about the system is partially known and uses a decision-
making process to generate unknowns from the partial information. 
Hamzaçebi and Es [14] used the grey model to forecast monthly elec-
tricity consumption by using past consumption from 1945 to 2010. It 
was shown that a direct optimized grey model performs better than 
an iterative model and the predictions of MENR. Hamzaçebi con-
ducted a study on planning primary energy sources using a seasonal 
grey model [15]. By the addition of seasonality, the prediction error 
for the period from 2004 to 2020 in terms of MAPE was reduced 
from 8.39% to 5.18%. Another study used the Nonhomogeneous 
Discrete Grey Model by using data of 1970–2013 [16]. They showed 
that NGDM has lower errors than the previous grey models in pre-
diction by providing a better fit to the curve. In Şahin [17], the grey 
prediction method was employed to model Turkey’s electricity gen-
eration and consumption for 1996–2016, and MAPE of 3.12% and 
3.08% were obtained for generation and consumption respectively. 

Regression models were used to estimate the relationship between 
inputs and outputs by using statistical methods. In Yukseltan et al. [4], 
a linear regression model was used to forecast annual, week-ahead, 
and day-ahead demand by considering harmonics of the variations. 
Data were collected from 2012 to 2014 and predictions produced 
less than 3% MAPE. Especially when the relationship is not linear, 
nonlinear methods such as support vector machines can provide a 
better fit to the data. In Kavaklioğlu [6], SVR was used to model the 
annual electricity consumption as a function of socio-economic indi-
cators such as population, GNP, imports, and exports, from 1975 to 
2006. Relative RMS error for consumption is determined as 1.51% 
in this study. In another study, a genetic algorithm was employed 
to find the best parameters for support vector regressor to forecast 
annual electricity consumption [44]. Electricity consumption, popu-
lation, import, export and GDP between 1975 and 2014 were used as 
input variables, and MAPE of 3.66% was obtained. In a recent study, 
Ülgen and Poyrazoğlu [5] used MLR to predict the electricity prices. 
Historical prices for 1 year, from September 2018 to September 
2019, were used for forecasting and it was shown that 1-day, 1-week, 
and lagged moving average prices are important in the performance. 

In Özkan et al. [13], Fourier analysis with least squares approach and 
the Holt–Winters exponential smoothing method were compared 
to predict electric consumption. They observed that the forecast 
models produced the lowest error with 12 months’ data and that 
Winter’s method outperformed the Fourier-based method. 

Filik  et  al. [45] proposed a method based on quasi-periodic load 
characterization. Their model covers long-term to short-term char-
acteristics by having coarse to fine models to achieve hourly accu-
racy. The multiresolution model was tested for the period from of 
2002 to 2005 and 5.74% hourly, 1.87% weekly, 1.5% monthly, and 
0.73% yearly MAPE were observed. Dönmez et al. [46] proposed a 
second-order curve fitting model to estimate the demand as a func-
tion of population and GNP with R2 value of 0.994. In Çalık and Şirin 
[47], electricity consumption values were modeled with Mittag-
Leffler functions and the annual consumption values showed that 
the model fit when it was compared to previous MLP and SVR pre-
dictions in literature. Melikoglu [48] forecasted annual electricity 
demand by 2023 after a detailed analysis of Turkey’s capacity targets 
and energy potential. The model includes a simple nonlinear func-
tion of the current population, electricity demand per capita at the 
reference (base) year, average annual increase of electricity demand 
per capita, and difference between the current and reference year. 
Different scenarios were created according to demand growth. In 
a recent study, Yukseltan et al. [49] proposed an hourly electricity 
demand model based on Fourier analysis with an update structure. 
They used past demand data and forecasted hourly, daily, and yearly 
demands using data for the period 2012–2017. It was shown that 
the model works with MAPE of 0.87% in hour-ahead, 2.90% in day-
ahead, and 3.54% in the year-ahead predictions, and that applica-
tion of the AR model combined with Fourier series improves the 
system slightly. 

IV. DATA ANALYSIS
When the data used in the forecasting studies are examined, the fol-
lowing observations are made. The data used include

•	 Historical electricity consumption, generation, and price;
•	 Electricity infrastructure such as installed capacity of different 

generation sources;
•	 Demographic data such as population;
•	 Economic indicators such as GNP, GDP, export and import rates, 

etc.;
•	 Weather;
•	 Time variables such as calendar date, seasons, weekday or 

weekend, official or religious holidays.

Most of the researchers have shown that there is a strong correlation 
between electricity demand/load/price and the factors listed above, 
and using data such as economic or social factors or seasonality will 
increase the performance of the forecast. 

Before the electricity consumption/generation data were made 
publicly available on the Transparency Platform, the electricity-
related data were provided by the MENR, local distribution com-
panies, International Energy Agency, State Institute of Statistics 
(TÜIK), and SPO. Now, historical and current electricity generation/
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consumption data, and installed capacity are available for all 
regions of Turkey. The economic and social indicators are collected 
from TÜIK and related ministries such as the Ministry of Treasury 
and Finance, and MENR. 

Most of the studies concentrate on the forecast of load or demand 
while a few predict the price for the Turkish Energy Market. Where 
only a few studies focused on some specific region of Turkey such 
as industrial zones, a province, or a local distribution region, the 
others made their predictions for the whole of Turkey. More than 
half of the studies forecast annual amounts where the others made 
short- or medium-term predictions including monthly, weekly, or 
daily values.

V. CONCLUSIONS
The paper gives an overview of the electricity energy forecasting 
studies in Turkey for the period from 2003 to 2020. The paper ana-
lyzes the forecasting studies in terms of the forecasting methods 
used, the profiles of the researchers and their institutions, and the 
years and location information of the data. We apologize for not 
including some of the studies in the paper due to the space limita-
tion, and also due to the inaccessibility of the works that are pub-
lished in the scientific journals or conferences. 

The paper reveals the following findings: (1) There is a tremendously 
growing need for electricity energy forecasting parallel to the devel-
opment of smart grid systems; (2) The motives behind the studies 
on electricity forecasting for Turkey are diverse. Most of them can 
be said to be driven by the development of the data-driven fore-
casting methods such as neural network-based methods including 
deep neural network models for the time series. Some works are 
driven by the availability and accessibility of the sufficient number 
data of acceptable quality. The others are driven by the increasing 
need for smart energy management; (3) A large set of researchers 
and institutions aim to develop competencies in electricity energy 
forecasting, which are focused on Turkey’s electricity energy prob-
lems from different perspectives; and (4) A part of the studies does 
not show long-term continuity. They feature a somewhat intermit-
tent and temporary nature. 

This paper would be useful to identify the already developed compe-
tencies on electricity energy forecasting by the individual researchers 
and the institutions of Turkey, in order to establish new competency 
centers to meet Turkey’s need for forecasting of electricity produc-
tion and consumption.
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