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ABSTRACT

Electricity is one of the most important elements for economic growth and development of societies in today’s modern societies. The research of electricity 
generation, knowing the size of the electricity supply, and the methods developed to meet this supply are among the important subjects of study today. With 
the increase in electricity supply and the increasing importance of environmental pollution, the use of renewable energy sources in electricity generation is 
increasing. In this study, Long Short-Term Memory (LSTM), a type of recurrent neural network, is used to predict the energy production in a hydroelectric power 
plant. The LSTM method is one of the most popular recurrent neural network methods and is widely used in the field of deep learning. The graphical and 
numerical results obtained at the end of the study show the success and efficiency of the LSTM method.
Ct represents the updated cell state. With ft, forgotten information is removed, with it, new information is added. In the last step, the output layer is obtained 
by using the equations given below.

Index Terms—Forecast, hydroelectric power, long short-term memory, renewable energy.

I. INTRODUCTION
Increasing in the world population, developments and expectations 
in social welfare and living standards, rapid developments in industry 
and technology also increase energy consumption and consequently 
energy demand. Environmental and economic damages in the pro-
duction of fossil fuels, which are among the existing energy sources, 
have led countries to new energy production sources. The most 
important of these is renewable energy sources. Renewable energy 
is an inexhaustible, clean energy source that constantly renews itself. 
Some of these renewable energy sources are hydraulic energy, solar 
energy, wind energy, geothermal energy, and biomass energy.

Hydraulic energy is among the most widely used renewable energy 
sources. In order to benefit from this energy, dams are built and 
water is collected. Thanks to the motion energy of this accumulated 
water, electrical energy is produced in the turbine. Hydroelectric 
power plants (HEPPs) are also established for this purpose. The 
hydroelectric potential of the countries is determined according to 
the calculation of 100% efficiency of all-natural water flows within 

the borders of the country. Hydroelectric energy is renewable 
because of the natural cycle of water. The water evaporates, clouds 
form, and then it rains, and the water returns to the earth again. 
Because of this cycle, using water as an energy source is a safe and 
ideal choice.

About 71% of the electricity produced by renewable energy sources 
all over the world originates from hydroelectric energy [1]. Thanks 
to the hydraulic energy obtained depending on the precipitation 
regime, the high amount of electricity needed such as the opera-
tion of the factories and the lighting of the cities can be provided. In 
HEPPs, electricity is produced by utilizing the power of flowing water.

Hydroelectric Energy Production in Türkiye In 2019: the amount of 
energy produced only in HEPPs in Türkiye was 68 452 GWh. The 
installed capacity of HEPPs is increasing every year. As of 2020, 
there are 653 HEPPs across the country. However, the amount of 
hydroelectric energy production changes every year due to the cli-
mate. It still has a large share in energy production [2]. The use of 
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hydroelectric energy, which has an important place among renew-
able energy sources, is increasing in the world. Since 2018, the elec-
tricity produced by the hydroelectric energy method has reached 
an annual average of 4,200 TWh in the world. The country with the 
highest hydropower potential is China with 352 GW. China is fol-
lowed by Brazil with 104 GW, America with 103 GWh, and Canada 
with 81 GW. These 4 countries produce approximately 50% of the 
world’s HEPP installed power [3].

This research aims to develop and apply Long-Short Term Memory 
(LSTM) models to predict electricity production from hydroelectric 
sources. For this purpose, hydroelectric source data were config-
ured, trained, and validated. The results show that the preferred 
model works successfully on hydropower-based energy forecast 
data. The model developed could be a useful tool for energy plan-
ning and decision-making for long-term hydropower generation.

II. LITERATURE SURVEY
In the field of sustainable energy production, hydroelectric power 
stands as a dominant and reliable source, contributing significantly 
to global electricity generation [4]. The accurate forecasting meth-
ods in hydroelectric power generation are very important for effi-
cient grid management. This review examines the diverse array of 
predictive techniques employed in forecasting hydroelectric power 
generation, shedding light on their efficacy, limitations, and potential 
avenues for enhancement.

It is introduced that short-term prediction models designed spe-
cifically for estimating average electricity generation in hydropower 
plants [5–8]. The model relies on input data, including projected 
precipitation figures sourced from Numerical Weather Prediction 
tools, alongside historical records of hourly power output from these 
small-hydro plants. Covering a forecast horizon of seven days, the 
proposed model offers a practical solution for incorporating power 
production forecasts into Power System operations, electricity mar-
kets, and the scheduling of maintenance tasks within small-hydro 
power plants. The model’s efficacy is evaluated through its applica-
tion to aggregate hourly average power production forecasts for a 
real-world ensemble of 130 small-hydro power plants in Portugal. 
Impressively, the model yielded favorable outcomes, maintaining 
forecasting errors within a tight threshold and achieving consistently 
low values [9].

Ecuador’s predominant electricity generation sources encompass 
hydroelectric and thermo-fossil types, with hydroelectric produc-
tion intermittently surpassing the 50% mark of national output. 
This study’s core objective centers around constructing a predic-
tive model for monthly hydroelectric energy production [10]. The 
study conducted that five distinct stochastic process models are 
implemented, leveraging a historical dataset spanning 2000 to 2015, 
specifically focusing on Ecuador’s monthly hydroelectric energy 
production. Employing this model, projections are made for the 
year 2020, revealing an anticipated uptick in monthly production. 
Impressively, the actual values align within the confidence interval 
of the Auto-Regressive Integrated Moving-Average (ARIMA) model, 
which incorporates annual seasonality for predictions. The result-
ing model serves as a valuable tool for characterizing and predicting 
Ecuador’s hydroelectric energy generation, thereby holding promise 
for guiding prospective planning efforts within the electric sector. 
The results obtained for the data used in the study showed that 
the standard absolute deviation Mean Absolute Percentage Error 
(MAPE) value was 14.32% and the R2 value was 72.39%, indicating 
that the estimation was quite successful [11]. Also, it introduced 
a predictive analysis of hydroelectricity usage in Pakistan, utiliz-
ing 53 years’ worth of historical data. The methodology employed 
involves the application of ARIMA modeling. The outcomes of this 
study include a forecasted equation, which enabled the projection 
of hydroelectricity consumption up until the year 2030. The forecast 
in the study shows an average annual increase of 1.65% in hydro-
electric energy consumption. By 2030, there is a cumulative increase 
of 23.4% [12]. Using the three-parameter whitening grey prediction 
model as a foundation, a two-parameter optimized version is for-
mulated by combining and optimizing the order of accumulating 
fractional order in real-world scenarios with the background value 
coefficients. This tailored model is then employed to forecast China’s 
hydroelectric power generation. Impressively, the model demon-
strates a high level of proficiency, with a mere 1.13% comprehensive 
error rate. The outcomes underscore that the model’s effectiveness 
is substantial, suggesting a viable pathway to reaching the carbon 
peak target by the year 2030 [13]. 

The hydroelectricity consumption of China is estimated using a novel 
approach based on grey modeling techniques. The forecasting pro-
cess aimed in the study was performed with the gray-based models 
GM(1,1), DGM(1,1), and NGBM(1,1) and the non-gray-based time 
series forecasting models PR, ARIMA, and artificial neural networks 
(ANN). When the results obtained at the end of the study are ana-
lyzed, it is seen that the experimental results obtained by the unbi-
ased NGBM(1,1) model are more accurate [14]. The study delved 
into twenty distinctive input combinations, encompassing factors 
like dam inflow, rainfall data, and preceding months’ hydropower 
output. In each scenario, the anticipated output was a one-month 
projection of hydropower generation. Subsequently, the GWO-ANFIS 
hybrid model was leveraged to anticipate forthcoming hydropower 
production levels. The GWO-ANFIS demonstrated impressive capa-
bilities in forecasting hydropower generation, effectively meeting 
satisfactory benchmarks [15]. In [16], the study centers on a reservoir 
situated in China and spans the data range from 1979 to 2016. These 
include the utilization of ANN, ARIMA, and support vector machines. 
The resultant findings illuminate the promising potential of these 

Main Points

• The aim of this study is to predict electricity generation from 
hydroelectric sources and long short-term memory (LSTM) 
networks method is used for the prediction process.

• Long short-term memory is a type of recurrent neural net-
work and is used in this study to predict power generation in 
a hydroelectric power plant. The LSTM method is a popular 
recurrent neural network method that is widely used in the 
field of deep learning.

• The graphical and numerical results obtained at the end 
of the study show the success and efficiency of the LSTM 
method.
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models in effectively predicting hydropower generation, thus offer-
ing a valuable avenue for energy decision-makers to explore.

The LSTM method has started to be used in the field of energy in 
Türkiye. M. Bilgili et al. valuated the success of LSTM on energy con-
sumption data in Türkiye. The results showed that LSTM can be used 
effectively in energy consumption forecasting [17]. In another study, 
the use of LSTM networks to forecast Gross electricity consumption 
in Türkiye is discussed [18]. Cobaner et al. introduce a pragmatic 
approach that employs ANNs to forecast the potential of hydropower 
energy, specifically tailored to assess the viability of integrating a 
hydropower plant unit into an existing irrigation dam. At the end of 
the study, mean square error (MSE) and R2 results obtained using 
ANN and MLR models are given. For Bahçelik dam, the MSE result 
obtained with ANN is 1.006E+11, and the MSE result obtained with 
multiple linear regression (MLR) is 1.637E+11. For Sarimsakli Dam, 
the MSE result obtained with ANN is 5.986E+9, and the MSE result 
obtained with MLR is 1.143E+11. When these results are examined, 
it becomes clear that the accuracy of ANN is better than MLR [19]. 
Accurate prediction of photovoltaic power generation (PV power) 
is an area of interest today. Hu et al. [20] used the LSTM network 
for PV power estimation in their study. In this study, the method is 
applied to real PV power data of a building in Japan. At the end of 
the study, successful results were obtained with the LSTM model. 
In another study, a bidirectional long short-term memory network 
(Bi-LSTM) based method was used for accurate short-term predic-
tion of wind power [21]. In the optimization phase of the parameters 
of the Bi-LSTM model, the grey wolf optimization (GWO) method 
was used. With this method, high-accuracy results were obtained for 
short-term wind power forecasting. Wind power forecasting is also 
a challenging process, as it often has nonlinear and non-stationary 
characteristics. Liu et al. [22] used a hybrid deep learning model 
based on parallel architecture by using a tensor concatenate mod-
ule to combine a temporal convolution network and a LSTM neu-
ral network to improve the prediction performance. In their study, 
they used wind turbine data from Türkiye. They obtained successful 
results with the proposed model.

Studies in the literature show that LSTM is an effective method and 
that deep learning techniques are becoming increasingly popular 
in time series forecasting. Traces of this trend can also be seen in 
energy research in Türkiye. In this study, the choice of the LSTM 
method for electricity generation from Türkiye’s hydroelectric 
resources is a reflection of this trend. It is observed that the use of 
LSTM in Türkiye’s energy sector is increasing. This study, like other 
studies on hydroelectric power generation in Türkiye, aims to obtain 
more accurate forecasts using the LSTM method.

III. LONG SHORT-TERM MEMORY (LSTM)
LSTM was developed in the late 1990s as a subset of Recurrent 
Neural Network (RNN) for modeling sequential data. The RNN tech-
nique examines each piece of information in the input data itera-
tively, taking into consideration the value of the preceding output. 
Although it is claimed that this architecture executes learning that 
takes past time periods into account, it has been shown that this 
is not viable due to the gradient disap peara nce/e xplos ion problem. 
To solve this problem, the LSTM architecture, which can remember 

long-term information, has been developed. The most prominent 
feature that distinguishes LSTM networks from other RNN structures 
is the gate mechanisms and cell state. With these structures, gradi-
ent fading and bursting problems are reduced. The cell state in the 
network structure uses the chain rule. This preserves the gradients 
and allows the gradients to remain large enough to learn long-term 
dependencies. As a result, the problem of gradient decay is reduced 
by this structure. At the same time, gate mechanisms prevent gradi-
ent explosion by controlling the size of the gradients. A block dia-
gram of the LSTM prediction model is given in Fig. 1.

In the LSTM structure, information flow occurs in a certain flow 
order. The basic structure of LSTM consists of a memory unit called 
the cell state and three main gates designed to update, delete or 
read this memory. The gate is used to add and update new informa-
tion to the cell state. First, a sigmoid activation function determines 
which values will be updated. Then, a new candidate cell state is cre-
ated with a tanh activation function. These two values are multiplied 
and the current cell state is updated. Forget gate is used to remove 
unnecessary information from the cell state. Values calculated with 
a sigmoid activation function determine how much of the informa-
tion in the cell state is forgotten. Values between 0 and 1 determine 
which information will be preserved and which information will be 
forgotten. After old information is removed with the forgetting gate, 
new information is added with the entry gate. This allows the cell 
state to be updated and long-term dependencies to be learned. The 
output gate is used to produce output from the updated cell state. By 
activating a sigmoid on the cell state, it is determined which informa-
tion will be used as output. Additionally, the values derived from the 
cell state are normalized with the tanh activation function.

As seen in Fig. 1, the LSTM design is made up of multiple sections 
that repeat themselves. In general, the LSTM structure is formed 
up of three layers: forget, input, and output. The information to be 
erased is initially determined in the LSTM architecture by using the 
Xt and ht−1 information as inputs. These actions are carried out in the 
forget layer (ft) and the activation function is sigmoid.

Fig. 1. Block diagram of the long-short tem memory prediction 
model.
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 ft =σ(Wf, x × Xt + Wf, h × ht−1 + bf) (1)

In this equation, ft is the output of the forgetting gate. Wf,x and Wf,h 
represent the weight matrices, ht−1 represents the hidden state of 
the previous time step, and Xt represents the input of the current 
time step. bf is the bias term and σ represents the sigmoid activation 
function.

In the second step, the input layer (it) to calculate the new infor-
mation is updated using the sigmoid function. In the next step, the 
candidate information that will become the new information is then 
determined by the tanh function.

 it = σ (Wi,x × Xt + Wi,h + ht−1 + bi) (2)

here it is the output of the input gate. Wi,h and bi are the weight 
matrix and relevant bias terms, respectively.

 Ct = tanh (Wc,x × Xt + Wc,h × ht−1 +bc) (3)

Ct represents the candidate cell state information. Wc,h is the weight 
matrix and bc is the bias term. tanh represents the hyperbolic tan-
gent activation function. Next step is cell status update operations. 
New information is obtained using with this equation:

 Ct = Ct−1 × ft + it + Ct (4)

 ot = σ(Wo,x × Xt + Wo,h × ht−1 + bo) (5)

ot represents the output of the output gate and ht−1 represents the 
hidden state of the previous time step. Wo,h represents the weight 
matrix and σ represents the sigmoid activation function.

 ht = ot × tanh (Ct) (6)

here ht represents the hidden state of the current time step and 
tanh represents the hyperbolic tangent activation function. In Fig. 1, 
the gates of the LSTM model, including the input, forget and output 
gates, are detailed in the figure.

In the working logic of the algorithm, the process, whose steps are 
given, continues iteratively. The weight parameters (W) and bias 
parameters (b) are updated by the model to minimize the error 
value between the actual training values and the LSTM output val-
ues. Thus, the learning process is performed.

IV. RESULT AND DISCUSSION
Electricity production from hydroelectric sources data were used in 
this study. The data set covers the period between 1960 and 2013 
[23]. The data set consists of annual data. The data between 1960 
and 2009 is used as training data and the data for the last 4 years 
are used as test data. In the study, data on the ratio of the amount 
of electricity production from hydroelectric resources to the total 
electricity production between 1960 and 2013 were used [23]. These 
data are given in the Fig. 2 [23].

The aim of the study is to make forward-looking forecasts. At this 
stage, The LSTM method, which is popular among the RNN methods, 

is preferred. At the end of the prediction phase, the prediction results 
obtained for the years 2009–2013 are given in Fig. 3. The aim of the 
study is to provide training of the LSTM network with the available 
data for the years 1960–2009 [23]. At the end of the training phase, 
predictions were made for the years 2009–2013 [23]. Electricity 
production from hydroelectric sources values obtained as a result 
of the estimation were compared with the real values for the years 
2009–2013 [23]. The graphs of the results obtained at this stage are 
shown in the Fig. 3.

Root Mean Square Error (RMSE) error criterion is used to show the 
relationship between the actual values and the values obtained as a 
result of the estimation process. The RMSE error criterion is calcu-
lated as follows:

Fig. 3. Real electricity production from hydroelectric sources data 
[23] against predicted values by long-short term memory.

Fig. 2. Real electricity production from hydroelectric sources data 
(% of total) for the years 1960–2013 [23].
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where i and n are the index and the data number, respectively. yi 
represents the real data and yi '  represents the result obtained. 
The RMSE value of the obtained results is 1.0753 and the regres-
sion result is 0.93306. The regression graph of the results is given 
in Fig. 4. The regression value of 0.93306 obtained as a result 
of the estimation study shows that the regression model used 
explains the data well. In this case, the higher the regression value, 
the better the model fits the actual data. This high regression value 
indicates that the prediction model for the electricity generation 
rate from hydroelectric sources strongly captures the relationship 
between the data and explains this relationship well. The regres-
sion graph of the results obtained at the end of the study is shown 
in Fig. 4.

V. CONCLUSION
Hydroelectric resources are one of the preferred energy sources to 
meet the ever-increasing electricity supply. In this study, a predic-
tion study has been carried out for the utilization of hydroelectric 
resources used in electricity generation. When the studies in the 
literature are examined, it is seen that recurrence-based methods 
are preferred in the prediction studies carried out in recent years. 
In the prediction phase of the study, the LSTM algorithm, which is a 
recurrent method, is preferred. At the end of the study, the estima-
tion process is completed with an error value of 1.0753 according 
to the RMSE error criterion. The results obtained at the end of the 

study show that the preferred method can be used successfully in 
the prediction studies to be carried out in the field of utilization of 
hydroelectric resources.
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