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ABSTRACT

Renewable energy sources are increasingly critical in addressing global energy needs while reducing carbon emissions and energy costs. Accurate forecasting 
of power generation in solar power plants is essential for efficient energy management and planning. This study introduces a novel hybrid prediction model 
that combines several prevalent machine learning algorithms to improve the accuracy of solar power generation forecasting. Using real meteorological and 
production data, the proposed model significantly outperforms individual prediction models. The hybrid model's integration of meteorological data ensures 
more reliable short-term and long-term power predictions, contributing to improved decision-making in solar plant operations. The results demonstrate the 
advantages of this approach, providing valuable insights into enhancing the predictability and operational efficiency of solar power plants.

Index Terms—Hybrid predictive model, machine learning, renewable energy ensemble learning, solar power prediction.

I. INTRODUCTION
Renewable energy sources, by reducing dependence on fossil fuels, 
offer a sustainable solution to future energy crises. This transition not 
only provides greater flexibility in energy usage but also promotes 
equitable global energy distribution. Among renewable energy tech-
nologies, solar power stands out due to the sun’s abundant and 
nearly inexhaustible energy supply. While continuous advancements 
are being made in solar energy conversion technologies, optimizing 
the efficiency of conventional solar panels remains a prominent area 
of academic interest. Increasing the efficiency of energy generation 
from solar panels is closely linked to maximizing solar energy utiliza-
tion, particularly solar radiation. In this context, sensor-based solar 
tracking systems have been developed to enhance the capture of 
solar radiation, while accurate prediction of power generation based 
on radiation levels offers an alternative approach.

Power generation prediction can be approached through either 
rule-based or artificial intelligence (AI) methods, with machine 
learning (ML), a key subset of AI, offering a range of highly effective 
predictive algorithms. The integration of ML techniques into solar 
power forecasting has gained significant attention in recent stud-
ies [1]. Furthermore, deep learning, a specialized branch of ML, has 
demonstrated considerable advantages in enhancing solar power 

predictions [2, 3]. For example, satellite imagery has been utilized 
as a dataset for forecasting [4], and meteorological data have been 
incorporated alongside satellite images to train predictive models [5, 
6]. In addition to predicting the overall power generation of a solar 
power plant, models have been developed based on data from indi-
vidual solar panels [7, 8]. Moreover, research has extended beyond 
plant-level forecasting to examine the effects of power generation 
predictions on microgrid operations [9-11]. Solar power estimation is 
also very important for energy management systems that use these 
estimates. In [12], solar power values are used in the reward func-
tion of a reinforcement learning-based energy management system 
for microgrids to optimize itself. The proposed hybrid solar power 
forecasting model will help such energy management systems to 
optimize themselves and improve dynamic management decisions. 
These studies demonstrate that predictive models can facilitate real-
time operation of microgrids, enabling day-ahead planning and opti-
mizing energy distribution.

ML models are also widely used in other renewable energy appli-
cations, such as wind power generation and wind speed estimation 
[13]. While predicting wind turbine output is relatively straightfor-
ward when wind speed and direction are known, forecasting solar 
power generation presents a greater challenge due to the variability 
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of meteorological conditions. Despite this complexity, prediction 
models for solar power have produced promising results.

However, the development of predictive models alone is insufficient; 
performance evaluations and model improvements are necessary. 
Even accurate models may not perform optimally in the face of sharp 
changes in power generation. To address these challenges, neural 
networks and sensor optimization solutions have been proposed 
[14], and combining ML models with other optimization techniques 
has been shown to reduce prediction errors [15]. Additionally, boot-
strapping techniques have been introduced to enhance model per-
formance [16]. An alternative approach to improving predictions is 
the use of hybrid models, which combine multiple forecasting mod-
els, either using the same algorithm with different parameters or 
using entirely different algorithms [17, 18]. While combining mod-
els based on the same algorithm has yielded some improvements, 
hybrid models that integrate different algorithms have shown supe-
rior results [19]. This concept of combining multiple predictive mod-
els presents challenges in determining how best to integrate them 
into a unified output.

Building upon these advancements in solar power generation predic-
tion, this study proposes an innovative hybrid model that integrates 
several prevalent ML algorithms. By employing a specifically devel-
oped hybridization approach, the combined model’s performance is 
evaluated against individual models to determine its overall effec-
tiveness in improving prediction accuracy.

II. POWER PREDICTIVE METHODS
ML, encompassing the concept of deep learning, is a subfield within 
the broader AI paradigm. A key focus of ML is predictive modeling—
anticipating future outcomes based on historical data. In this study, 
we introduce a novel approach to prediction using ML techniques. 
ML is categorized into three primary branches: supervised learning, 
unsupervised learning, and reinforcement learning [20]. Supervised 
learning, which is the focus of this study, relies on labeled datasets 
to predict outcomes. This branch is primarily used for tasks such as 
regression, where the goal is to predict continuous values, and clas-
sification, which assigns data to predefined categories. In the follow-
ing section, we briefly discuss the predictive models employed in this 
study.

A. Polynomial Regression
In many datasets, there can be a linear relationship between certain 
input variables and the corresponding output. In such cases, linear 
regression models often yield satisfactory predictions. However, 
when higher-order relationships exist—such as when second, third, 
or higher degrees of the input variables influence the output—linear 
models fall short, and polynomial regression (Poly. Reg.) becomes 
necessary to capture the non-linear dynamics of the data.

Poly. Reg. is an extension of linear regression, particularly useful 
when the relationship between the input variables and the output 
is non-linear. A basic linear regression model is represented by (1).

 Y X� � ��� �0 1  (1)

where Y is the target variable, X is the input vector, β0 and β1 are coef-
ficients, and ∈ represents the error term. This model can be general-
ized to multiple inputs using the multiple linear regression (2):

 Y X X X� � � ��� ��� � � �0 1 1 2 2 n n  (2)

Although this form of regression works well for many problems, it 
may be insufficient when the relationship between the input and 
output is non-linear. In such cases, Poly. Reg., which incorporates 
higher-order terms, is applied. The general form of a Poly. Reg. 
model is given by (3):

 Y X X X X� � � � ��� ��� � � � �0 1 1 2 2
2

3 3
3

n n
n  (3)

This approach allows the model to capture more complex relation-
ships within the data. In the present study, a Poly. Reg. model was 
utilized to predict solar power generation based on meteorological 
data, with a polynomial degree of 4 to better account for the nonlin-
ear interactions in the data. This enhanced the accuracy of the pre-
dictions, providing a more robust model for forecasting solar power 
output.

B. Support Vector Machines
Support Vector Machine (SVM) is a supervised ML algorithm 
widely used for both classification and regression tasks, though 
it is primarily employed in classification. In this study, the regres-
sion variant, known as Support Vector Regression (SVR), is used 
to develop the predictive model. SVM operates on the same fun-
damental principles as SVM. The key objective of SVR is to iden-
tify the best-fit line (or kernel function) that optimally represents 
the data. In SVR, this best-fit line corresponds to a hyperplane 
that maximizes the number of data points within the margin 
boundaries.

SVR relies on selecting and configuring a kernel function based on 
the problem at hand. For classification tasks, the kernel function is 
chosen to effectively separate the data, while for regression tasks, 
the kernel is selected to best fit the data. The most commonly used 
kernel functions include the Gaussian kernel, the Gaussian Radial 
Basis Function (RBF), the polynomial kernel, and the linear kernel, 
with RBF often delivering robust results across various problem 
domains. The goal is to position as many data points as possible 

Main Points

• Introduction of a Hybrid Model: A novel hybrid model com-
bining four Machine Learning (ML) algorithms improves 
solar power generation forecasting.

• Improved Accuracy: The hybrid model achieves superior 
accuracy (94.22%) compared to individual machine learning 
models.

• Use of Meteorological Data: The integration of real meteoro-
logical and production data enhances the reliability of short-
term and long-term predictions.

• Operational Impact: The model supports better decision-
making in solar plant operations, including battery storage 
and system planning.
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within the margins of the support vectors and minimize errors for 
data points that lie outside these margins. A detailed framework of 
SVR can be seen in Fig. 1.

In addition to the brief overview provided here, several review arti-
cles further elaborate on the use of SVM in both classification and 
regression contexts, demonstrating its effectiveness as a powerful 
tool for diverse prediction tasks [22].

C. Decision Tree
Decision Tree (DT) is a ML algorithm that partitions a dataset into 
regions based on feature values. Although predominantly used 
for classification, it also serves as an effective regression tool. For 
regression tasks, the algorithm creates a tree structure by dividing 
the dataset into distinct regions. Formally, the dataset's features X1, 
X2, X3, … Xp are mapped to regions R1, R2, R3, … Rj.

 X X X R R R Rp j1 2 1 2 3, , , , ,� � �  

where Xs represent features of the dataset and Rs are regions that 
the DT algorithms create. In each region Rj, predictions are made 
based on the average output values ( yi . ) within that region. The 

selection of regions is based on minimizing the Residual Squares 
Error function, calculated as:

 
j

J

j

i Ry y
j

� �
�� �� �

1 1

2
ˆ  (4)

where yRj  the average of outputs in Rj  region. Region selection in 
DTs is accomplished through recursive binary splitting, as described 
by the formula given in (5).

 R R1 2j s X X s j s X X sj j, | , |� � � �� � � � � �� �  (5)

where j and s represent the feature and split point that minimize the 
following expression in (6).
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Once the dataset is divided into regions, the process halts if any 
region contains too few data points, ensuring that the model does 
not overfit. A general framework for DT demonstrating regions and 
data analysis is given in Fig. 2.

In DT, features such as X1 and X2 are used to identify distinct regions 
in the dataset. The surfaces that correspond to these regions are 
depicted by the tree structure, as shown in Fig. 2. The upward arrows 
in the figure represent the average values of the points within each 
region, which are used for making predictions. However, if the data 
is divided into too many regions, the model risks overfitting—memo-
rizing the data rather than generalizing from it.

To mitigate overfitting, tree pruning is applied. This technique adjusts 
the size of the tree by either reducing the number of terminal nodes 
or minimizing the squared error function. The pruning process is 
based on the following formula given in (7).

 
m

T

x R

i Rj

i m

y y T
� �
�� �� � �

1

2
ˆ �  (7)

Fig. 1. Overall framework of Support Vector Machine.

Fig. 2. Determining the regions on features of the dataset in Decision Tree.
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where, T is a subtree of T0 (T ⊂ T0). |T| is the number of terminal 
nodes in tree T. Rm represents the region associated with the ter-
minal node m and α is a hyperparameter controlling the complex-
ity of the model. To reduce the output of this formula, the model 
either decreases the number of nodes or lowers the squared error. 
The optimal tree size is determined through k-fold cross-validation, 
which ensures that the tree is neither too large (overfitting) nor too 
small (underfitting), leading to the best predictive performance. 
Ultimately, DTs construct a multidimensional structure over the 
dataset to generate predictions. This approach has proven to be 
one of the most effective and widely used methods for both clas-
sification and regression tasks, with its adequacy and efficiency well-
established in various applications [23].

D. Random Forrest
The Random Forest (RF) algorithm is fundamentally built on DTs and 
belongs to the class of Ensemble Learning (EL) methods. It specifically 
utilizes bagging, a technique in which multiple DTs are constructed 
on different subsets of the same dataset, and the final prediction is 
the average of the individual tree outputs. The key objective of RF 
is to reduce the correlation between trees by constructing smaller, 
randomized trees on distinct sub-datasets, thereby enhancing pre-
diction accuracy.

Several DT algorithms are used as the foundation of RF, such as ID3 
[24], C4.5 [25], and CART [26]. While CART relies on the principles 
explained in the previous section, algorithms like ID3 and C4.5 utilize 
entropy as an information measure to evaluate the quality of a split 
at a particular node. This measure, called information gain, deter-
mines the feature with which the tree will begin. The entropy for a 
dataset is calculated as follows:

 info D p p
i

m

i i� � � � � �
�
�

1

2log  (8)

where, pi  represents the probability of selecting a feature. After cal-
culating the entropy for the entire dataset, the entropy for individual 
features is determined:

 info D
D
D

I DA

j

v
j

j� � � � �
�
�

1

.  (9)

The information gain is then calculated as the difference between 
the overall entropy and the feature-specific entropy:

 Gain A info D info DA� � � � � � � �  (10)

The feature with the highest information gain is chosen as the root 
node of the tree, and subsequent branches are formed by repeating 
this process for the remaining features.

Once all the trees in the RF have been constructed, the algorithm 
aggregates the predictions from each tree, and the average of these 
predictions—after reducing their correlation—provides the final out-
put. One of the main strengths of the RF algorithm is its applicabil-
ity to both classification and regression tasks, yielding high-quality 
results in both domains [27]. Additionally, RF is highly resilient to 

overfitting; if a sufficient number of trees is included, the likelihood 
of overfitting decreases.

Several hyperparameters need to be fine-tuned to optimize the perfor-
mance of RF, such as the number of trees, the maximum number of fea-
tures used at each split, and the minimum number of leaves required to 
split a node. Proper tuning of these parameters is essential for achiev-
ing high predictive accuracy. The number of trees and the randomness 
introduced in generating subsets are especially critical to ensuring 
robust performance. Although RFs can be computationally intensive 
due to their parallel structure, they consistently deliver excellent pre-
dictive results, making them a cornerstone of EL approaches [28].

III. IMPLEMENTATION AND PROPOSED METHOD
This section provides a detailed description of the dataset used for 
training the proposed algorithms and outlines the key implementa-
tion parameters. Additionally, the characteristics of the proposed 
method are explained.

A. Dataset
The solar power generation primarily depends on two factors: the 
type of solar panels used (such as crystalline or semiconductor-
based panels) and the prevailing meteorological conditions at the 
time of generation. While the structure of the panels impacts the 
power plant's performance in a stable manner, real-time weather 
conditions dynamically influence the amount of energy generated, 
either positively or negatively. Given these considerations, the mod-
els developed in this study rely on meteorological data. Specifically, 
weather data collected at intervals of less than 5 minutes over the 
past 5 years, along with total energy output from solar power plants 
in the region, are used to train the models.

The dataset comprises eight meteorological features, including 
ambient temperature, direct radiation, diffuse radiation, ultraviolet 
(UV) radiation, wind speed, wind direction, precipitation, and atmo-
spheric pressure. Given that this data spans 5 years, using all fea-
tures for training would significantly increase the computation time. 
To address this, the P-value for each feature was calculated, allow-
ing the selection of the most impactful variables for model training. 
Fig. 3 presents a bar graph depicting the importance of each feature 
in relation to solar power generation.

Before training, data preprocessing was performed to handle missing 
values, and the dataset was adjusted to an hourly frequency. The pre-
processed dataset was saved for further use. Rather than utilizing all 
eight meteorological variables, the analysis focused on four features 
considered most directly related to power generation: ambient tem-
perature, global radiation, diffuse radiation, and ultraviolet radiation.

Fig. 4 shows the variation in ambient temperature over 140 ran-
domly selected hours. Changes in ambient temperature affect the 
temperature of the solar panels, which in turn influences energy 
production. Among the selected features, radiation data is consid-
ered the most significant factor affecting power generation. Fig. 5 
visualizes three types of radiation—global, diffuse, and ultravio-
let—over the same 140-hour period. As shown, global radiation is 
the dominant factor, followed by diffuse radiation and ultraviolet 
radiation.
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To further assess the relationship between radiation data and energy 
production, Fig. 6 visualizes the power generation data from a solar 
power plant in the same region over the same time period.

A comparison between Figs. 5 and 6 reveals a clear relationship 
between the variations in radiation and power generation. To further 
illustrate this correlation, a heatmap was created to show the rela-
tionships between the various meteorological features and power 
generation.

The heatmap confirms a strong correlation between power genera-
tion and different types of radiation, with global radiation exhibiting 
the highest correlation with energy output. Additionally, diffuse and 
ultraviolet radiation also demonstrate notable effects on power gen-
eration. Based on these findings, ML models are trained using four 
key input variables—ambient temperature, global radiation, diffuse 
radiation, and ultraviolet radiation—along with the power genera-
tion data as the output label.

B. Evaluation Methods for Model Performances
Loss (error) functions are essential tools widely used in various areas 
of AI to evaluate the performance of trained models. In deep learn-
ing, they are employed to adjust the weights and biases of neural 
networks via backpropagation. In ML, they measure the discrepancy 
between the model's predicted outputs and the actual values. One 
of the most commonly used loss functions is the Mean Square Error 
(MSE), defined in (11).

 MSE
n

y y
i

n

i i� �� �
�
�1

1

2
  (11)

Where yi represents the actual data and yi  denotes the predicted 
values for index i. Mean square error is a robust metric for evaluat-
ing the performance of models by quantifying the average squared 
difference between predicted and actual values. Another closely 
related metric is the Root Mean Square Error (RMSE):

Fig. 3. Data analysis: feature importance levels of the dataset.

Fig. 4. Ambient temperature over 140 randomly selected hours.
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 RMSE
n

y y
i

n
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�
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2
ˆ  (12)

While MSE provides the average squared deviation, RMSE gives 
the average magnitude of the prediction error. Both metrics are 
useful for understanding different aspects of model performance. 
Additionally, the Mean Absolute Error (MAE) is used in this study, 
defined as follows:

 MAE
n

y y
i

n

i i� �
�
�� ˆ1

1

 (13)

These three error metrics—MSE, RMSE, and MAE—are utilized to 
evaluate and enhance the performance of the models and inform 
the unification strategy in the proposed hybrid approach.

C. Proposed Hybridization Method
Developing a forecasting model, training it, and deploying it after 
achieving satisfactory results has been extensively explored in the 
literature. An additional approach involves training a single model 
multiple times with different kernel functions and hyperparam-
eters, yielding positive outcomes. Another prominent method is 

hybridization, where multiple models are combined to improve pre-
diction accuracy. This study focuses on the latter approach, empha-
sizing the creation and integration of multiple ML models.

The models are trained using the algorithms outlined in Section II 
and the dataset described in the subsection A. Dataset. After train-
ing, each model is evaluated using the test dataset to generate 
prediction values. These predictions are then combined using an 
innovative voting method, formalized in (14):
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where

• y  is the final prediction value.
• y1, y2, y3, and y4, are predicted values of four ML models, 

respectively.
• R R R R1

2
2
2

3
2

4
2, , , : R-square scores of four ML models, respectively.

• yα is the predicted value of the model that has the highest accu-
racy score.

Fig. 5. Three types of radiation over 140 randomly selected hours.

Fig. 6. Power generation data over the same 140 hours.
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• yβ is the predicted value of the model that has the lowest accu-
racy score.

• c0 consolidation and improvement constant, which is selected 
as 1.5 for four ML models.

• R R2 2� �
� � � : difference between the best and worst accuracy 

score.

This hybrid approach ensures that the model with the highest accu-
racy contributes the most to the final prediction, while the model 
with the lowest accuracy has the least influence. Moreover, the dif-
ference between the best and worst models is factored into the final 
output, further enhancing the overall prediction. Fig. 8 illustrates the 
general framework of the proposed hybrid prediction model.

IV. PERFORMANCE ANALYSIS
The predictive models, developed using four distinct ML algo-
rithms, were trained on meteorological data and power generation 
records from the past 5 years. This section examines the perfor-
mance of these models. In addition to the error metrics outlined 
in Section III, model accuracy is also considered a key performance 
measure. The R-squared (R2) value is used to calculate accuracy, 
defined as [29]:

 R SS
SS

y y

y y

RES
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i

n

i i
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i i
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 (15)

Fig. 8. General framework of the proposed hybrid prediction model.

Fig. 7. Heatmap of correlations between features and power generation.



Aksoy and Genc. Improving Accuracy in Solar Power Plant Power Generation Prediction

where SSRES represents the sum of squared residuals from the regres-
sion model, and SSTOT is the total sum of squares from the mean 
model. The R2 value, ranging between 0 and 1, reflects model perfor-
mance, where values closer to 1 indicate better accuracy. Multiplying 
R2 by 100 yields the accuracy percentage.

For a comprehensive performance analysis, the accuracy percent-
age, R2, MSE, RMSE, and MAE values were calculated for all models. 
Additionally, the proposed hybrid model's prediction results were 
evaluated using the same metrics. Table I summarizes the perfor-
mance and error metrics for all models.

Evaluating the error metrics, the RF algorithm demonstrated the 
smallest deviation between actual and predicted values, while the 
SVM algorithm exhibited the largest deviation. Interestingly, the 
model produced a lower MAE than the Poly. Reg., despite its lower 
accuracy, indicating a smaller average error between the actual and 
predicted values.

Table I also shows that the proposed hybrid model, using the uni-
fication method, achieved the best overall performance, both in 
terms of accuracy and error metrics. The hybrid model had the 
lowest RMSE, signifying minimal deviation, and the lowest MAE, 
indicating the smallest difference between actual values and pre-
dictions. While the error metrics—MSE, RMSE, and MAE—are 

often considered similar, they highlight distinct aspects of model 
performance.

Figure 9 provides a visual comparison of the proposed hybrid predic-
tion model with the other ML models. In this figure, the predicted 
values from the hybrid model are shown in purple, while actual val-
ues are plotted in blue. Additionally, the Poly. Reg. results are shown 
in orange, the DT model in green, and the RF model in red. As evident 
from the graph, the Poly. Reg. model tends to overestimate at sharp 
transition points, and the DT model often produces predictions sig-
nificantly higher than the actual values in certain cases.

A closer view of the sharp transition regions is presented in Fig. 10, 
where the proposed hybrid model (in purple) demonstrated the 
closest match to actual values in these regions. Accurate predictions 
in areas with rapid fluctuations in power generation are crucial for 
effective decision-making in power plant operations. The zoomed-in 
graph emphasizes the success of the proposed method in predicting 
sharp changes with high accuracy.

While the RF model delivered relatively good prediction results, 
the hybrid model produced predictions almost identical to actual 
values. To further assess the hybrid model’s performance, Fig. 11 
visualizes both the actual and predicted data, with the forecasted 
results shown in orange and actual values in blue. Apart from a few 

Fig. 10. Closer examination of model performance in sharp transition 
regions.

Fig. 9. Comparison of the proposed method with the prevalent machine learning models.

TABLE I. 
PERFORMANCE RESULTS AND COMPARISON

Method

Performance Matrices

Acc. (%) MSE RMSE MAE R2

Poly.Reg. 89.83% 10387 101.9 64.53 0.8983

SVM 81.92% 14893 133.0 72.45 0.8192

DT 87.47% 12992 113.9 42.45 0.8747

RF 93.01% 6933 83.27 35.82 0.9301

Hybrid 94.22% 5899 76.81 32.21 0.9422

Poly. Reg.: Polynomial Regression, SVM: Support Vector Machine, DT: Decision 
Tree, RF: Random Forest, MSE: Mean Square Error, RMSE: Root Mean Square Error, 
MAE: Mean Absolute Error, R2: R-squared Value.
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sharp transition points, the two sets of data overlap nearly perfectly. 
Notably, the hybrid model tends to slightly underestimate power 
generation at sharp transitions, a more cautious approach that is 
advantageous for avoiding operational errors.

V. CONCLUSION
The dynamic nature of meteorological conditions significantly 
affects the power generation of solar power plants, making accu-
rate forecasting essential for operational decision-making. This study 
addresses the need for more reliable predictions by developing a 
hybrid prediction model that combines multiple ML algorithms. By 
training these models on real meteorological and production data, 
the hybrid model achieved superior accuracy compared to individual 
models, reducing prediction errors and deviations.

Briefly, our research aimed to advance predictive modeling by pro-
posing a hybrid prediction model that combines four prevalent ML 
methods. The individual methods, including Poly. Reg. (89.83% accu-
racy), SVM (81.92% accuracy), DT (87.47% accuracy), and RF (93.01% 
accuracy), each demonstrated notable performance. However, our 
proposed hybrid prediction method surpassed them all, achieving an 
impressive accuracy of 94.22%. Not only did our hybrid model exhibit 
superior accuracy, but it also outperformed the prevalent methods 
in terms of error metrics. Comparative results of MSE, RMSE, and 
MAE consistently favored our hybrid prediction method, highlighting 
its efficacy in minimizing prediction errors.

These quantitative outcomes emphasize the practical relevance 
and potential impact of our hybrid model in solar power predic-
tion. The robust performance across various metrics positions our 
approach as a promising solution for predictive tasks. Moreover, the 
proposed model enhances decision-making processes in solar plant 
operations, such as managing battery storage systems and planning 
for system decommissioning or expansion. The study highlights the 
critical role of accurate forecasting in maximizing the efficiency of 
solar power plants and the broader potential for ML to contribute 
to renewable energy optimization. The hybrid model's performance 
underscores its value in guiding future strategies for sustainable 
energy production. In summary, our work not only contributes to 
the ongoing discourse on improving prediction accuracy but also 
establishes a foundation for the adoption of hybrid models in solar 
power prediction. The superior results in both accuracy and error 

metrics underscore the significance of our proposed approach, 
marking a noteworthy advancement in predictive modeling.
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