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ABSTRACT

This paper presents compared performances of three metaheuristic algorithms in determining the cost of hybrid renewable energy system. Using genetic 
algorithm (GA), particle swarm optimization (PSO), and artificial bee colony (ABC), the best affordable sizes of solar photovoltaic array, battery bank, and a 
minimum-rated diesel generator that could be hybridized to meet the demand of a community in Southwest Nigeria were determined. Load profile, solar radia-
tion, and temperature data were employed as required inputs, and the parameters of the algorithms were properly set to ensure the best result. Bonferroni–
Holm method was deployed to ascertain the statistical significance among the algorithms. It was found that ABC produced the best configuration comprising 
427 numbers of solar photovoltaic panels, 19 battery units, and 163.2 kW-rated diesel generator. With this, a total annualized cost of $167 284 and 0.2443 
estimated cost of energy were obtained. These were the lowest when compared with PSO and GA. The t-test between PSO and ABC are both 5.83 × 10−10 < 
0.01666667, between ABC and GA are 6.09 × 10−6 <0.01666667 and 6.09 × 10−6 <0.025, while between GA and PSO are 9.13  × 10−1 > 0.01666667 and 9.13  × 
10−1 > 0.05. PSO/ABC and ABC/GA groups are clarified significant, while GA/PSO group is insignificant; post hoc test reveals that ABC produced the best result. 
Hence, a reliable and sustainable power supply at a reduced cost is guaranteed for the community.

Index Terms—Artificial bee colony, Bonferroni–Holm method, diesel generator, genetic algorithm, particle swarm optimization

I. INTRODUCTION
In recent years, hybrid renewable energy system (HRES) has been 
a choice for the electrification of isolated areas where grid exten-
sion is difficult and costly or area where there is an epileptic power 
supply. Hybrid system is the combination of one or more renew-
able energy sources, such as solar photovoltaic (PV), wind energy, 
hydro system, and so on, to produce energy [1]. Furthermore, 
integrating energy storage systems like battery banks or conven-
tional energy sources (such as diesel generators) makes HRESs 
more cost-effective and reliable [2]. HRES will not only minimize 
the reliance on the fossil fuels (such as gas, oil, or coal) that pro-
duce environmental pollutants but will also allow the use of more 
natural resources with energy storage system to guarantee stable 
and reliable energy, which is the major concern of energy users 
across the world [3, 4].

The development of sustainable power supply is facing two chal-
lenges of how to efficiently generate sufficient energy by using 
sustainable energy resources and generation at a reasonable cost 
for the users [5]. However, the use of estimated sizing method to 
determine the appropriate size and selection of HRES components 
has resulted in either undersized or oversized components. It should 
be noted that undersizing HRES may result in shortages of energy 
delivered and operational constraints, while oversizing causes higher 
initial setup costs and other issues. Part of the solution to these chal-
lenges is to employ software tools. In [1, 6], hybrid optimization of 
multiple energy resources (HOMER) was used in component siz-
ing of HRESs. While [1] deployed HOMER to perform an economic 
evaluation on PV/distributed generation (DG) with flywheel as a 
storage system and by which it was shown that integration of HRES 
greatly reduced the level of diesel fuel consumption, authors in 
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[6] presented a HOMER-based optimal configuration and sizing of 
HRES in supplying reliable energy to a university campus community. 
However, software tools face the challenges of mono function reduc-
tion, more processing time, and frequent stuck in local minima [7]. 
Therefore, artificial intelligence (AI) technique, such as metaheuris-
tic algorithms, has emerged to develop cost-effective and sustain-
able HRES [8]. Metaheuristic algorithms solve the problems of HRES 
in many applications with minimum processing time and achieving 
optimality [9]. Thus, the use of AI optimization method has become 
important in order to lower initial costs and increase efficiencies [3], 
and many studies have been carried out using single or two different 
algorithms.

Using genetic algorithm (GA), authors in [10] calculated the best 
cost value from the best configuration of a hybrid energy system; 
the economic impact of optimal sizing on a rural village microgrid 
that produces sustainable electricity at a lower cost was analyzed in 
[11]. Using both GA and traditional system, various components of 
an HRES system have been analyzed [12], with the results showing 
that a combination of PV and diesel energy systems yielded the best 
result at reduced cost. In [13], particle swarm optimization (PSO) was 
deployed to determine the required components’ optimal sizing of 
a renewable energy-based electric power systems for residential 
areas, while [14] presented sizing of HRES using PSO algorithms and 
concluded that the operational cost of fuel usage was greatly mini-
mized using a combination of PV and battery storage. In a study car-
ried out in two different locations, Rabat and Baghdad, the economic 
cost and size of HRES were determined using PSO techniques [15]. A 
study intended to achieve the overall minimum system cost of a solar 
energy system while considering pollution criteria of DG was con-
ducted in [16] using PSO, while a modified heuristic approach based 
on PSO and GA was deployed in [17] for a study on hybrid system 
operation using four comparison scenarios, and the result shows 
that the PSO algorithm is better than the GA. In [18], performances 
of GA and PSO were evaluated in a study on metaheuristic-based 
analyses, with comparison of the two algorithms carried out based 
on iteration convergence time, memory usage time, and solution 
quality, and the result showed that PSO outperformed GA. In siz-
ing renewable energy and battery storage systems for an HRES, [19] 
deployed GA, with the use of two cost-effective scenarios of combin-
ing PV, wind energy, and battery storage system to determine the 
cost of energy of the designs.

There are many studies on HRES in the literature, wherein a single 
algorithm was deployed. Also, in a number of research, two differ-
ent algorithms have been employed for comparison. In this present 

study, a comprehensive comparison of the performances of three 
metaheuristic methods in achieving optimal configuration of HRES is 
presented. Significances of the algorithms, GA, PSO, and ABC, when 
applied to an HRES at Ayetoro community in Southwest Nigeria, are 
also presented.

II. METHODS
A. Brief Description of the Study Area and the Data Collection 
Approach
Ayetoro community is a suburb of Ede in Osun State, Southwest 
Nigeria. It is on Lat. 7.727637˚S/Long 4.428045˚W coordinate. There 
are 122 houses in the community, with the inhabitants being farm-
ers, civil servants, or shop owners (petty traders). Electrical loads in 
the community are majorly domestic and commercial. In profiling 
the loads, the housing population was grouped into eight sections 
based on the structures of the buildings and the electrical equip-
ment found the houses. By random approach, eight homes were 
selected from each section of the community, and a well-structured 
questionnaire was administered to the stratified sample to obtain 
information on energy consumption patterns.

Data on the solar radiation and temperature of the location were 
collected from the National Aeronautics and Space Administration 
(NASA) surface meteorology and solar energy database online. The 
solar energy database of NASA has a long-term climatological esti-
mate of meteorological quantities and surface solar energy data 
majorly needed for the study of environmental process [20].

B. Modeling of the Hybrid System
Presented in Fig. 1 is the block diagram of the proposed HRES. 
Energy output from the battery source served as input to the 
inverter, where the DC voltage was converted to AC and fed the 
electrical load. Components of the system are modeled to deter-
mine the numbers of PV panels, battery units required, and the 
rating of the DG needed to be hybridized to effectively sustain 
the community load. The modeling was achieved in the MATLAB 
environment.

1) Solar Panel Modelling
The output power of the panel (Ppt) depends on the output voltage 
(Vpt) and the current (Ipt) in the panel and is expressed as [21, 22]:

 P V Ipt pt pt= ´  (1)

While the output voltage is [22]:

 V V Tpt voc= + ´( )max ,m D  (2)

where Vmax is the maximum value of voltage, μvoc represents the 
temperature coefficient for open-circuit voltage (V/˚C), and ΔT 
represents the time step. The corresponding output current (Ipt) is 
obtained as [22]:
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Main Points

• The proposed hybrid power system is optimized using, com-
paratively, three metaheuristic algorithms.

• In testing for the statistical significance of the algorithms, 
Bonferroni–Holm test method is applied.

• Artificial bee colony gives the best result in terms of design, 
total annualized and estimated energy costs.
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With the corresponding values of A and B expressed as [21, 22]:
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where Imx and Vmx are the maximum current and voltage, respectively, 
while Isht is the short circuit current and Voc denotes the open-circuit 
voltage. The change in the value of the current and temperature over 
time is [21]:
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RT is the hourly irradiation value of the solar panel on a tilted 
surface, and Rfo is the reference point of the radiation energy at 
1000 W/m2

. μsht is the short-circuit temperature coefficient, while Kc 
and Kcr are solar panel specified temperature and reference work-
ing point (25˚C), respectively. The value of Kc is further evaluated 
as [22]:
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where Tam is the ambient temperature. Normal operating cell tem-
perature (NOCT) ranges from 42˚C to 46˚C [22].

2) Modeling of Battery Storage
Nominal capacity of a battery storage system is the product of the ini-
tial capacity of the battery (Bi) and the ampere-hour (Ah). Therefore, 
it is important to initially specify the permissible depth of discharge 
(DOD, %) when determining optimal sizing as [19]:

 SOC DOD Bimin .= -( )1  (9)

The stored energy requires accurate estimation of the state of charge 
(SOC) because the SOC of battery varies with time as [7]:

 SOC t t SOC t P t B t
Vbat Teff
dc

+( ) = ( ) + ( ) ´( )æ
è
ç

ö

ø
÷D D

1  (10)

where Pbat(t) is the energy of the battery, Vdc is the DC voltage of the 
battery, and t is the step value in 1 hour. The battery charges when 
Pbat(t) is greater than zero and drains when Pbat(t) is less than zero. 
Furthermore, the round-trip efficiency of a battery, BTeff, is defined 
as [7]

 B B BTeff Teff
ch

Teff
d= +( )0 5.  (11)

where BTeffch  and BTeffd denote the charging and discharging round-trip 
efficiency, the charging and discharging efficiencies vary and are typi-
cally around 85% and 100%, respectively. The maximum charge or 
discharge power at any time is also vital in battery modeling. It is 
determined by the maximum charge current as [7]

 I
P t

N Vm
bat

b dc
=

( )´
´
1000

.  (12)

where Nb is the number of batteries connected together. The stor-
age constraints are obtained in [7], where SOCmin and SOCmax are the 
minimum and maximum SOC of the battery.

 SOC SOC t SOCmin max£ ( ) £  (13)

3) Inverter System Modeling
The inverter rating capacity is designed with an increase of 20% to 
compensate for losses and enable the system to meet the maximum 
load demand [22], with Pinv, Ploadmax, and effinv given as [22, 23]:

 P pinv load= 120% max  (14)

Fig. 1. Block diagram of photovoltaic/distributed generation system.
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out
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=

( )  (15)

where Pinv is the nominal rating of the inverter, Ploadmax is the maxi-
mum required load energy demanded, effinv is the efficiency, and Pout 
is the output power of the inverter.

4) Diesel Generator Modeling
The DG operational cost for the design was obtained as [22]:

 C t P t AP t BP tDF F D DE( ) ( ) ( ) ( )= ´ +éë ùû  (16)

where A and B are fuel curve coefficients, PF(t) is the fuel price, 
PD(t) and PDE(t) are the output power (W) and rated power (W) of the 
DG, respectively.

The operational strategy was formulated such that when the renew-
able resource was insufficient to satisfy the load demand, the bat-
tery bank provided the necessary power as given in Fig. 2 [24]. 
ΔP(t) denotes the change in power value, either excess or deficit, 
after the design utilizes the solar source. The following scenarios are 
considered regarding the value of ΔP(t) given in (6):

 DP t P t P t Pload pt bat( ) ( ) ( )= - +( )  (17)

Scenario I: If the energy supplied by the solar source is insufficient 
to meet up the load demand, then more energy is needed from the 
battery bank (i.e., ΔP(t) > 0), and SOC of the battery bank is then fully 

monitored. The DG system is utilized if SOC drops within the mini-
mum preset value of 20%.

Scenario II: If the energy supplied by the PV source is in excess 
compared to the load demand (i.e., ΔP(t) < 0), then excess energy is 
diverted to the battery bank for the charging process. When maxi-
mum SOC is met, excess energy is dumped for future usage. The DG 
system is switched off.

Scenario III: If the energy supplied by the solar source meets the load 
demand (i.e., ΔP(t) = 0), then the battery bank is placed on standby 
for an emergency, and the DG system is switched off.

C. Formulation of Objective Function
As one of the important economic measures used for system cost 
analysis, the cost of energy (COE) is the total cost of the HRES multi-
plied by the amount of electrical energy generated annually within 
the system. COE is given as [25]:

 COE
C j z

P t

cap f

g
t

$ /
,RekWh TASC( ) = ´

( )
( )

=å 1

8760  (18)

where the total annualize system cost (TASC) is achieved by identi-
fying the various decision parameters and their corresponding vari-
ables. Formulating the objective function is subject to constraints to 
make the sizing optimal. TASC is obtained as [22]:

Fig. 2. Flowchart of system operation strategies.
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 min minTASC N TC N TC P TC P TCPV PV B B D D inv inv= + + +( )  (19)

where TCPV is the PV panel cost, TCB is the battery storage cost, TCD 
is the DG cost, and TCinv is the inverter cost. Also Npv and NB are 
the number of panels and batteries required while PD and Pinv are 
the power ratings of the generator and inverter system needed to 
achieve minimum cost. The total costs of TCPV, TCB, and TCD can be 
further calculated using [22]:

 TC C C CPV PVC PVI PVM= + +  (20)

 TC C C C CB BC BI BM BO= + + +  (21)

 TC C C C CD DC DI DM DO= + + +  (22)

where CBC is the battery capital cost, CBI is the battery installation 
cost, CBM is battery maintenance cost, and CBO is the battery oper-
ational cost. Table I presents the cost and life expectancies of the 

components. The capital recovery factor is a ratio to determine the 
present worth of the annuity using the real interest rate and the 
project’s lifetime as given in [26]:

 C j z
j j

j
cap f

z

zRe ,( ) = +( )
+( ) -
1

1 1
 (23)

where j denotes the annualized interest rate and z represents the 
useful lifetime in years. The interest rate is given as [26]:

 j
i a

a
n f

f
=

-( )
+( )1

 (24)

where in denotes the nominal interest rate and af represents the 
inflation rate. The objective function was minimized by deploying the 
following sets of constraints:

 1 £ £N NPV PVmax  (25)

TABLE I. 
ANALYSIS OF COMPONENT PARAMETERS [7]

S/N Item Component Parameter Value

1. Solar panel Capital cost 250 $ each

Replacement cost 150 $

Maintenance and operation cost 10 $/year

Solar panel life 20 Years

2. Inverter Capital cost 1250 $ each

Replacement cost 750 $

Maintenance and operation cost 50 $/year

Inverter life 20 Years

Inverter efficiency 90 %

3. Battery bank Capital cost 750 $ each

Replacement cost 250 $

Maintenance and operation cost 10 $/year

Battery life 7 Years

Inverter efficiency 90 %

Minimum state of charge 20 %

Maximum state of charge 100 %

4. Diesel generator Capital cost 520 $ each

Replacement cost 350 $

Maintenance and operation cost 80 $/year

Diesel generator life 25 Years

Diesel generator efficiency 80 %

Fuel cost 0.38 $/L
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 1 £ £P PD Dmax  (26)

where NPVmax and PDmax are the maximum numbers of solar panels and 
maximum power demand from DG.

D. Brief Descriptions of the Algorithms

1) PSO Algorithm
PSO was first described in 1995 by Kennedy and Eberhart, and has 
been successfully applied in many scientific domains [27]. The PSO 
technique influenced the combined intelligence of a group of ani-
mals, such as a flock of birds, animals travelling in herds, or schools 
of fish moving together. Each particle utilized the distance between 
the current position and the new position. A change in the velocity 
and position of each particle is performed using [28]:
 
V t t C U p t X t C U g tpw a a bestpw pw b b bestpw+( ) = ( ) +( ) ( ) - ( )( ) + ( ) (1 a Vpw )) - ( )( )é

ë
ù
ûX tpw  

 (27)

 X t X t X tpw pw pw+( ) = ( ) + +( )1 1  (28)

where ∝ is the factor of the inertial component that affects the algo-
rithm, Vpw(t) is particle velocity in the algorithm. Ca and Cb represent 
parameters of the metacognitive components, Ua and Ub represent 
two random variables in the range of 0 and 1 employed to keep the 
population diverse, and Xpw(t) is the change of position toward the 
particle best positions. The PSO algorithm offers a certain appealing 
feature of good memory where the particles retain the knowledge of 
good solutions compared to the GA approach [29].

2) Genetic Algorithm
It is a search algorithm that is based on the natural selection pro-
cess. It is based on one of the most significant survivals of the fittest 
values. The best person represents the optimal solution after a few 
generations until the population can no longer endure. GA simulates 
the evolutionary mechanism by which inherited traits are passed on 
from one generation to the next. A gene is the most fundamental 
unit of inheritance [11]. Chromosome exchange and reordering are 
known as crossover. The steps taken for the technique are as follows: 
It starts with the initialization of the algorithm’s process and checks 
for the condition for process continuation, as shown in Fig. 3. The fit-
ness function examines and evaluates the result generated to deter-
mine the best outcome to be retained for the process. Population 
diversity is achieved through mutation. It produces new results in 
the system; the procedure is repeated on several occasions until it 
converges, indicating the optimum solution [30].

3) Artificial Bee Colony
In 2005, Karaboga devised the ABC method [31] that mimics the 
well-organized social structure and division of labor in honeybee col-
onies. There are three major bee colony classifications: employed, 
onlooker, and scout bees. At first, employed bees will randomly 
select a set of food source locations. The amount of nectar they gen-
erate will be measured, and they returned with specialized dances to 
communicate with the other bees about that food source. Onlooker 
bees are another type of bee that waits on the dance floor to select 
which food sources to pursue after collecting information about 

it from employed bees [32]. Scout bees go on a random quest for 
new food sources. The quality of the fitness is related to the solu-
tion achieved, which indicates the quantity of available food that 
corresponds to it in this method. The position of the available food 
reflects the possible point of solution to the problem. Compared to 
other algorithms, it has fewer control parameters and convergence 
speed increased due to its direct operation. The probability Px of 
selecting a food source x is determined as given in:

 P fit

fit
x

x

q

q

Nf
=

=
å

1

 (29)

where fitx represents the fitness value of the amount of food source 
at x position and Nf is the number of food sources.

E. Statistical Analysis
One of the most used statistical tools in research is the analysis of 
variance (ANOVA) approach [33], which focuses on analyzing the dif-
ferences in group means by comparing between- and within-group 

Fig. 3. Flow chart of genetic algorithm.
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Fig. 4. Raining season and dry season load demand profile of the community.

variance differences. The dependent and independent variables are 
utilized in the test. When comparing the means of three groups, the 
null hypothesis is identified if the population means of the three 
groups are all the same. However, the alternative hypothesis is iden-
tified when at least one of the population means of the three groups 
is different, rather than the population means of the three groups 
are all the same. The null hypothesis (H0) and alternative hypothesis 
(H1) are given as [34]:

 H0: µ1 = µ2 = µ3 (30)

 H1
-: µ1 ≠ µ2 or µ1 ≠ µ3 or µ2 ≠ µ3 (31)

As a result, if the means of any two of the three groups differ, the null 
hypothesis can be rejected.

The Bonferroni-Holm technique is a statistical procedure used to 
compare two groups of a data set and solve the problem of mul-
tiple comparisons by modifying the rejection parameters for each 
assumption the most generally suggested method to examine the 
significant effects [35].

III. RESULTS AND DISCUSSION
The load profile of the community, as obtained during raining season 
(June–November) and the dry season (December–May), is presented 
in Fig. 4. The profile shows there was low demand between 21:00 h 
and 2:00 h and between 7:00 h and 15:00 h, while the demand slightly 
rise from 4:00 h to 6:00 h when people are preparing for their vari-
ous places of work. The peak load of the community exists between 
the period of 16:00 h and 20:00 h when most of the people arrive 
from work. It can also be noted that peak load is higher during the dry 
season than in the rainy season. The peak and the minimum demand 

during the rainy season are 148.28 kW and 45.03 kW, respectively, 
while 163.29 kW peak demand with corresponding 45.04 kW mini-
mum demand was obtained during the dry season. Daily and yearly 
load demands are 2089.48 kWh and 680 850 kWh, respectively.

As shown in Fig. 5, the irradiation level in the community, which is 
1561.99 kWh/m2/day during the dry season, is high enough to pro-
duce reliable solar energy. Likewise, the locality has a good tempera-
ture gradient with the maximum recorded being 38.44˚C in the dry 
season and the minimum being 17.447˚C in the rainy season as pre-
sented in Fig. 6.

Fig. 7 shows the plot of numbers of solar panels, battery units, and 
the system cost of the 50 runs.

Table II shows the results obtained for the total number of solar pan-
els, the battery unit, minimum DG required, and component cost 
analysis of the components. The results are 423, 38, and 163.2 kW 
for GA; 426, 27, and 163.2 kW for PSO; 430, 20, and 163.2 kW for 
ABC, respectively. The result indicates that ABC shows the lowest 
total annualized cost (TAC) of $167 284 compared to PSO and GA 
with TAC of $167,693 and $168 566, respectively. The COE of the 
optimal sizing for GA, PSO, and ABC are 0.2476, 0.2463, and 0.2457, 
respectively, indicating that ABC has the lowest COE. Table III pres-
ents the results of optimal sizing when based on PV solar system 
only and battery storage system only respectively. Fig. 8 presents the 
comparison of the cost analysis of three scenarios used for different 
component configurations.

ANOVA test for the three algorithms was conducted using data 
analysis available in Microsoft Excel. Table IV shows the algorithms’ 
sum, average, and variance of the total cost of energy, while Table V 
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Fig. 5. Solar radiation plot of the community.

Fig. 6. Hourly temperature plot of Ayetoro community.

shows the sources of variance between groups and within groups 
with their sum of squares, degree of freedom, and the mean square. 
The F-statistic of one-way ANOVA has a P value of 1.822 × 10−7 which 
is less than the alpha value of 0.05. The results show that statisti-
cal differences exist in the data group. The null hypothesis is there-
fore rejected, and the result is statistically significant. The results 
obtained from using the Bonferroni-Holm method of multiple 
comparison tests indicate that the t-test between PSO and ABC 

are both 5.83 × 10−10 < 0.01666667, between ABC and GA are 
6.09 × 10−6 < 0.01666667 and 6.09 × 10−6 < 0.025 while between 
GA and PSO are 9.13 × 10−1 > 0.01666667 and 9.13 × 10−1 > 0.05 as 
shown in Table VI. This further clarifies that PSO/ABC group and ABC/
GA are significant while GA/PSO group is insignificant. These post 
hoc tests reveal that two treatment pairs are statistically different 
and ABC produces the best result. The convergence plot of the three 
algorithms is presented in Fig. 9.
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Fig. 7. Plot for the three algorithms showing the solar photovoltaic required, battery units, and total cost of electricity.
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TABLE II. 
COMPARATIVE RESULTS OF THE OPTIMAL SIZING AND COST ANALYSIS

Parameter GA PSO ABC

Number of solar panels required (kW) 423 426 430

Number of battery units 38 27 20

Total load of community (kW) 680 850 680 850 680 850

Total solar cost ($) 143 260 144 368 145 450

Diesel generator cost ($) 735.69 735.69 735.69

Total battery cost ($) 7308.30 5327.31 3836.29

Power inverter cost ($) 17 262 17 262 17 262

Total annualized cost ($/year) 168 566 167 693 167 284

Cost of energy ($) 0.2476 0.2457 0.2443

ABC, artificial bee colony; GA, genetic algorithm; PSO, particle swarm optimization.

TABLE III. 
OPTIMAL SIZING OF SOLAR PV PANEL-ONLY AND BATTERY-ONLY POWER SOURCE

PV Solar Panel-Only Power Source Battery-Only Power Source

Algorithms GA PSO ABC GA PSO ABC

Number of solar panels 175 175 175 0 0 0

Number of battery units 0 0 0 10 37 49

DG energy generation (kW) 4.537 × 105 4.537 × 105 4.537 × 105 6.749 × 105 6.594 × 105 6.516 × 105

Total annualized cost ($/year) 3.5469 × 105 3.5469 × 105 3.5463 × 105 3.9356 × 105 3.9055 × 105 3.8917 × 105

Cost of energy ($) 0.5210 0.5210 0.5209 1.4687 × 104 1.4687 × 104 1.4687 × 104

ABC, artificial bee colony; DG, distributed generation; GA, genetic algorithm PSO, particle swarm optimization; PV, photovoltaic.

Fig. 8. Cost analysis of three different scenarios used in sizing.
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TABLE IV. 
ONE-WAY ANOVA RESULT FOR ALGORITHMS

Groups Count Sum Average Variance

PSO 50 8 395 454.816 167 909.0963 142 282.2543

ABC 50 8 372 446.689 167 448.9338 81 742.71787

GA 50 8 396 030 167 920.6 404 458.8163

ABC, artificial bee colony; GA, genetic algorithm PSO, particle swarm optimization.

TABLE V. 
SHOWS THE VALUE OF P VALUES AND F CRITICAL VALUES WHERE (∝ = 0.05)

Source of Variation Sum of Squares Degree of Freedom Mean Square F-Stat P-Value F Critical

Between groups 7 239 182.17 2 3 619 591.085 17.27773008 1.822E-07 3.057620

Within groups 30 795 705.64 147 209 494.5962

Total 38 034 887.81 149

TABLE VI. 
BONFERRONI AND HOLM POST HOC TEST

Algorithms P Value (t-test) Bonferroni Rank Holm Significant

PSO vs. ABC 5.83E-10 0.01666667 1 0.0166667 Yes

ABC vs. GA 6.09E-06 0.01666667 2 0.025 Yes

PSO vs. GA 9.13E-01 0.01666667 3 0.05 No

ABC, artificial bee colony; GA, genetic algorithm PSO, particle swarm optimization.

Fig. 9. Convergence plot of particle swarm optimization, artificial bee colony, and genetic algorithm.
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IV. CONCLUSION
A hybrid energy system that consists of PV panels and battery storage 
units has been designed to provide sustainable and reliable electrical 
energy to a community in Nigeria. This paper uses a mathematical 
model of the components to determine the optimal size and ensure 
that the design’s constraints are not violated. Results obtained 
from the three metaheuristic algorithms (GA/PSO/ABC) show that 
ABC produces the best configurations with 427 numbers of solar 
PV panels, 19 battery units, and 163.2 kW diesel generator ratings 
with the lowest TAC of $167 284 as compared to PSO and GA with 
$167 693 and $168 566, respectively. The COE estimate is 0.2443 for 
ABC, 0.2476 for GA, and 0.2457 for PSO. The results obtained from 
Bonferroni-Holm multiple comparison tests indicate that the 
t-test between PSO and ABC are both 5.83 × 10−10 < 0.01666667, 
between ABC and GA are 6.09 × 10−6 <0.01666667 and 6.09 × 10−6 

<0.025 while between GA and PSO are 9.13 × 10−1 > 0.01666667 and 
9.13 × 10−1 > 0.05. This further clarifies that PSO/ABC and ABC/GA 
groups are significant while GA/PSO group is insignificant. These post 
hoc tests reveal that two treatment pairs are statistically different 
and ABC produces the best result. It is concluded that the hybrid 
system completely satisfied the load demand of the community.
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