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ABSTRACT

This paper investigates the in-situ efficiency prediction of induction motors using four optimization algorithms: genetic algorithm (GA), particle swarm opti-
mization (PSO), whale optimization algorithm (WOA), and red fox optimization algorithm (RFO). Experimental evaluations were conducted on three induction 
motors with power ratings of 22 kW, 30 kW, and 132 kW under varying load conditions (25%, 50%, 75%, and 100%). The performance of the algorithms is 
tested not only under full load conditions but also under partial load conditions. This is an important requirement, given that motors usually do not run at full 
load in real-world applications. The algorithms were assessed based on their convergence behavior, accuracy, and experimentally measured efficiency values. 
The results revealed that the performance of the algorithms varies depending on the motor power and load level. While WOA is more successful at medium 
and high loads, PSO stands out at low loads. While GA provides higher accuracy, especially at full load on an motor, the performance of RFO varies according 
to the load level. In general, the performance of WOA and RFO stands out to some extent. The study demonstrates the advantages of non-intrusive methods 
for motor efficiency prediction that eliminate the need for direct shaft power measurements. It also offers practical benefits in industrial applications, such as 
reducing downtime and improving energy management.

Index Terms—Genetic algorithms, induction motor, in situ efficiency estimation, particle swarm optimization, red fox optimization algorithm, whale optimiza-
tion algorithm

I. INTRODUCTION
As industrialization increases worldwide, energy demand and the 
environmental impact of power systems have increased the need for 
sustainable solutions, and energy efficiency has become vital. The 
industrial sector accounts for the largest share of electricity con-
sumption, and induction motors consume a significant portion of 
the electricity produced in industrialized and developing countries. 
These motors play a critical role in the industry and are often used 
in mechanical handling and processing applications such as pump-
ing, air conditioning, and transmission systems. Optimizing the per-
formance of these motors saves both energy and costs. In addition, 
on-site evaluation of motor efficiency offers a significant advantage 
in reducing downtime, identifying motors with low efficiency, and 
taking appropriate action [1, 2]. Replacing an existing motor with 
a new, more efficient one can provide significant energy savings; 
however, the efficiency of existing machines must be determined 
with high accuracy and low intrusiveness under actual operating 

conditions [3]. However, precisely determining the energy efficiency 
of the induction motor requires the measurement of shaft power, 
which is intrusive and costly [4]. Several less intrusive methods 
have been proposed for in-situ efficiency estimation of induction 
machines without measuring shaft power. These methods include 
the Nameplate method [5], Slip method [6], Current method [7], 
Equivalent circuit method [8], Segregated loss method [9], Torque 
method [10], and Optimization-based methods [11].

Recently, optimization-based efficiency determination methods 
using metaheuristic algorithms have become popular. Pillay, Levin 
[12] presented a new method for in-situ induction motor efficiency 
determination using a genetic algorithm (GA). A comparative anal-
ysis of the torque meter results was carried out. Sakthivel et al. 
[13] developed non-intrusive efficiency estimation methods for 
industrial motors using an immunity algorithm. This method pro-
vides a solution to prevent energy wastage. Çunkaş and Sağ [14] 
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determined the efficiency of induction motors using multi-objective 
evolutionary algorithms. Non-dominated sorting GA-II and Pareto 
Evolutionary Algorithm-2 were used. Thangaraj et al. [15] employed 
particle swarm optimization (PSO) and differential evolution tech-
niques to determine the efficiency of induction motors without 
no-load testing. Comparative analyses were carried out using GAs. 
Arslan et al. [16] estimated the equivalent circuit parameters of 
induction motors using a differential evolution algorithm and GA. 
The results show that the differential evolution algorithm provides 
higher accuracy. Chandrakanth et al. [17] calculated the in-situ effi-
ciency of induction motors without no-load testing using PSO and 
validated it with efficiency measurements. Chayakulkheeree et al. 
[18] devised a methodology based on PSO for three-phase induc-
tion motors, demonstrating that efficiency can be estimated with-
out disrupting the operation of the motor through the utilization 
of fundamental electrical instruments, including clamp-on power 
meters and non-contact tachometers. Al-Badri et al. [19] presented 
a method for estimating the efficiency of three-phase induction 
motors using GA and IEEE Form F2-method F1 calculations. This 
technique uses a DC test, full load operating point rms voltages, cur-
rents, input power, and sensorless speed determination techniques 
for in-situ efficiency estimation. Bijan and Pillay [20] developed a 
method based on PSO to reduce the adverse effects of tempera-
ture increases on efficiency determination. This method allows effi-
ciency estimation without waiting for thermal stabilization. Diarra 
et al. [21] developed a hybrid algorithm that reduces the compu-
tational load and estimates motor efficiency using Quantum PSO 
and trust region algorithm (QPSO-TRA). The rotor slot harmonic 
frequency method estimates the motor speed. Rajesh et al. [22] 
proposed an efficiency prediction model for induction motors by 
combining a barnacles mating optimizer and radial basis function 
neural network. The proposed method is compared with existing 
techniques, such as GA. This technique enables an accurate per-
formance assessment by optimizing the parameters of the motor.

This paper fills a significant gap by analyzing the performances of 
these algorithms in detail under different load conditions. As far 
as we know, there is no literature study that compares optimiza-
tion techniques such as GA, PSO, the whale optimization algorithm 

(WOA), and red fox optimization algorithm (RFO) together. Three dif-
ferent motor configurations of 22 kW, 30 kW, and 132 kW are consid-
ered, and the algorithms are evaluated based on their convergence 
behavior, accuracy, and experimentally measured efficiency values. 
It is observed that the GA and RFO algorithms exhibit slower conver-
gence in some experiments despite their initial low error rates. On 
the other hand, it is noteworthy that the PSO and WOA algorithms 
converge faster and predict with high accuracy, even under low load 
conditions. These findings can be used to fulfill the need to predict 
the performance of motors accurately. In addition, non-intrusive 
prediction of motor efficiency offers significant advantages for busi-
nesses in reducing downtime and optimizing energy costs. The pro-
posed method provides substantial benefits in industrial applications 
by providing accurate results without interrupting motor operation. 
The selection of appropriate algorithms has been shown to have 
a significant impact on the success of the method and the precise 
determination of energy efficiency.

II. METHODOLOGY
A. Optimization Algorithms
Optimization algorithms are instrumental in addressing many engi-
neering challenges, whether they originate from practical, real-world 
applications or the scientific research field [23]. Heuristic optimi-
zation algorithms employ mathematical modeling of intelligent 
behaviors observed in living beings or natural phenomena to solve 
complex problems. Heuristic optimization algorithms are frequently 
used in large and complex problems, whereas deterministic methods 
(such as linear programming) that guarantee global optimality are 
challenging to solve [24]. Heuristic algorithms are more straightfor-
ward to model and apply to complex problems than deterministic 
optimization approaches. Despite not guaranteeing global optimal-
ity, heuristic algorithms can frequently produce operational and 
high-quality solutions [25]. Therefore, they have attracted the atten-
tion of numerous researchers. Heuristic optimization continues to 
evolve, with new algorithms being proposed and utilized to address 
various problems. The following is an overview of the optimization 
algorithms used in experimental studies.

1) Genetic Algorithm:
Holland’s GA is recognized as one of the essential cornerstones 
of heuristic algorithms. It has been employed in numerous com-
plex optimization problems by emulating the evolutionary process 
observed in biological life and has yielded successful outcomes. The 
GA is adaptable due to its structure and robust due to the quality of 
the solutions obtained. Furthermore, it is an approach that can be 
utilized for continuous and discrete optimization problems [26].

Based on biological evolution principles, GAs utilize a set of opera-
tors, including selection, crossover, and mutation, to generate and 
reproduce the fittest individuals. The process begins with potential 
solutions randomly generated in the solution space and having a set 
of genes that can represent the solution.

 X L rand H Li

uru r r r
� � �� �� �� �0 1, *  (1)

where Xi

uru
 is the gene vector of individual ith, 


L  and 


H  are the lower 

bound and upper bound values, respectively, and rand is a random 
number in the closed range [0,1].

Main Points

• Genetic algorithm, particle swarm optimization, whale opti-
mization algorithm, and red fox optimization algorithms 
were compared for in-situ efficiency estimation of induction 
motors.

• Experimental evaluations were performed on three induc-
tion motors (22 kW, 30 kW, and 132 kW) under 25%, 50%, 
75%, and 100% load conditions.

• While WOA and RFO generally performed similarly at low 
and medium loads, PSO and GA were superior at certain 
loads

• Particle swarm optimization and WOA algorithms converge 
quickly, while GA typically exhibits the slowest convergence.

• The non-intrusive estimation method enables accurate effi-
ciency calculations without interrupting motor operation.
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Every optimization problem has an objective function, and the fitness 
value is calculated using the objective function of randomly gener-
ated individuals. The roulette wheel selection mechanism, which 
represents one of the selection mechanisms utilized in GA, assigns 
each individual a specific probability of selection proportional to its 
fitness value. The selected individuals are then transmitted to the 
subsequent generation.

 O U

U
i

i

j

n

j

�

�� 1

 (2)

where Oi represents the probability value of the ith individual and Ui 
represents the fitness value of the ith individual.

A crossover operation is used to mix individuals’ genetic codes. In 
the two-point crossover approach, gene sequences are separated 
at two defined points, and the gene sequence in the middle is 
swapped. The crossover points are denoted here as k1 and k2. The 
gene sequence change after the crossover operation is given in (3) 
and (4).

 B x x x y y x xk k k k n1 1 2 1 1 1 2 2 1� � � �� �� �, , , , , , , ,  (3)

 B y y y x x y yk k k k n2 1 2 1 1 1 2 2 1� � � �� �� �, , , , , , , ,  (4)

One operator that can be used to alter genetic variation at a specific 
rate is the mutation operator. When utilizing this operator, minor 
modifications are performed on a randomly selected number of 
genes. The selected gene is taken, and its value is reversed in (5).

 x xi i� �1  (5)

2) Particle Swarm Optimization Algorithm:
The PSO algorithm is a swarm-based algorithm proposed by Kennedy 
and Eberhart [27]. The algorithm is often preferred because it is eas-
ily adaptable and does not have too many design parameters. The 
PSO algorithm models the foraging process of flocks of birds and fish 
together [28]. In this algorithm, particles represent potential solu-
tions. Particles are randomly distributed in the solution space and act 
according to specific rules. In this process, they find their next position 
in the solution space by using their best solution (pbest) and the best 
solution in the swarm (gbest). The goal is to reach the global optimum, 
achieved by updating the particle’s position throughout the process.

In the PSO algorithm, the speed value is a significant factor in the 
process of transitioning from the current position to the subsequent 
position. Once the velocity value for each particle has been deter-
mined, the new position information is obtained by adding the cur-
rent position to the velocity value (7).

 V V I c rand pbest Xn n n n� � � �� �1
1

u ruuu u ru r uru u ruuuu u ruuuuuu u ru
. . . �� �� �c rand gbest Xn n

2

uru u ruuuu u ruuuuuu u ru
. .  (6)

 X X Vn n n� �� �1 1
u ruuu u ru u ruuu

 (7)

where the cognitive and social influence coefficients ( c1

uru
 and c2

uru
) are 

vectors, while rand represents a random number chosen within the 

range [0,1]. The vector pbest
u ruuuuu

, on the other hand, denotes the posi-
tion of the best solution thus far. The particle so far gbest

u ruuuuu
� represents 

the vector of the position of the best solution obtained by the swarm 
at any given point in time. The number of iterations is represented 
by n, the velocity value of the particle is represented by 


V , and the 

position of the particle is represented by 

X . 


I  is the inertia coef-

ficient vector.

If the new location produces a better-quality solution than the cur-
rent location, the particle updates the current location information 
with the new one. If the solution obtained with the updated posi-
tion information of any particle is better than the global solution, the 
global best solution is updated. The last gbest value is the best result 
obtained when the stop criterion is reached.

3) Whale Optimization Algorithm:
In 2016, Mirjalili and Lewis [29] proposed a WOA, a heuristic algo-
rithm inspired by the hunting strategies of humpback whales. The 
hunting strategy employed by humpback whales is referred to as 
the “bubble net attacking” strategy [30]. This strategy involves encir-
cling and compressing their nets, enabling them to hunt their prey 
through spiral movements. In this approach, the process of locating 
and searching for prey is regarded as the exploration phase, while 
the circular maneuvering and compression process is considered 
the exploitation phase. The success of WOA is based on its ability to 
execute the exploration and exploitation phases in a balanced man-
ner [31].

In WOA, the prey is initially identified through random searches 
within the solution space. These searches contribute to the global 
search, which in turn facilitates a more comprehensive exploration 
of the solution space. Once they have spotted their prey, humpback 
whales need to squeeze them. The shrinking encircling mechanism 
is considered localized foraging. The circular movement of the whale 
around its prey is realized by the following process. Thus, the whales 
circle the best solution obtained so far and try to get better solutions 
by narrowing the prey circle.

 
r r uru u ru
F P B Xn n� �.  (8)

 X X U Fn n� � �1
u ruuu u ru r r

.  (9)

where 

X  is the location vector of the current whale, 


B  is the loca-

tion vector of the whale with the best solution found so far, 

P  and 


U  are multiplier vectors scaled by random numbers between 0 and 
2, n  is the number of iterations, and 


F  is the distance between the 

current whale and the whale with the best solution.

 X B X e Bn n n sk n� � � � ��1 2
u ruuu uru u ru uru

. .cos Àl  (10)

In the bubble net attacking strategy, whales make a spiral updating 
position and a shrinking encircling. The choice between these two 
approaches depends on the random probability p. If p is less than 
0.5, the shrinking encircling approach is used; otherwise, the spiral 
updating position is used. In (10), s is a coefficient acting on the loga-
rithmic spiral, and k is a randomly chosen number in the range [−1,1].
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4) Red Fox Optimization Algorithm:
Foxes, which have high adaptation and integration skills, can survive 
in many geographies around the world [32]. In particular, their high 
success in hunting approaches allows them to survive even in the 
most challenging environments [33]. Mohammed and Rashid pro-
posed the RFO algorithm by modeling the prey detection and hunting 
approaches of red foxes [34]. Red foxes first use sound waves from 
their potential prey to locate them and then decide in which direc-
tion to attack them. If these two processes are well executed, they 
are highly successful. Sound waves are used by red foxes to detect 
the distance of prey. The distance between the red fox and potential 
prey is given by the following equations. The distance between the 
red fox and the prey is determined by considering the back-and-forth 
of the detected sound.

 W bP ti=
u ru r

/  (11)

 
 
M W ti i= *  (12)

 MA Mi i

u ruu r
= 0 5. *  (13)

where 

ti  is a vector of random numbers in the interval [0,1], W is the 

speed of sound, bP
u ru

 is the parameter of the best solution found so 
far. 


Mi  symbolizes the reach value of the sound vector that gives the 

distance to the prey. But 

Mi  must be divided by 2 to find the actual 

distance ( MAi
u ruu

). Red foxes use the following equations to determine 
how to approach and attack prey.

 J tsi = 0 5 9 81 2. * . *  (14)

 
r u ruu
X MA J ai i i� � � �1 1  (15)

 
r u ruu
X MA J ai i i� � � �1 2  (16)

where ts is the average transfer time of the sound, Ji is the jump 
position, and 9.81 is the gravity value. The red fox also tries to avoid 
local optima by obtaining different positions. It updates different 
positions depending on whether a number in the interval [0,1] is 
above or below 0.18. If the random value is above 0.18, (5) is used; 
otherwise, (6) is used.

B. Problem Definition 
Fig. 1 shows an induction motor’s general equivalent circuit diagram 
[35]. In this diagram, R1 and X1 are stator resistance and reactance, 
R2 and X2 are rotor resistance and reactance, Xm is magnetization 
reactance, Rfe is core loss resistance, s is slip, Pin and Pout are input 
and output powers, PSLL is leakage losses, and PFW is wind and fric-
tion losses. There are seven unknown parameters to estimate the 
efficiency of the induction motor at any load condition. In addition 
to these, there are PSLL and PFW. This method reduces the number of 
unknown parameters to four (X1, Xm, Rfe, and R2).

1) R1 Stator Resistance and Temperature:
Stator copper loss accounts for 25–40% of the total losses in the 
machine, depending on the load. The DC experiment commonly 
determines it. According to the IEEE Std-112 standard, the following 
formula can determine R1 for different load values [36].

 R
R T K

T K
K
K

cold hot

cold
1

1 234 5 100
225

�
�� �

�
�
�

, ,
, % copper

aluminum
 (17)

where Thot is the operating temperature and Tcold is the temperature 
measured when the motor is cold, or can also be taken as the ambi-
ent temperature.

2) X1 And X2 Stator and Rotor Reactance:
The reactances X1 and X2 are constant and have no relation with 
temperature variation and load variation. According to the NEMA 
(National Electrical Manufacturers Association) classification, the 
X1 and X2 parameters of induction motors are distributed as in 
Table I [19].

3) Rotor Speed and Slip:
Rotor speed can be measured or estimated without contact. Stator 
current can be determined by harmonic spectrum analysis [37].

4) PSLL Stray Load Losses:
PSLL is load-dependent and represents the eddy current losses in 
metal components other than conductors. It is very cumbersome to 
measure directly; the rotor has to be removed, and reverse direction 
tests have to be performed [38].

5) IEEE standard defining test procedures (IEEE Std-112):

 P P P P P PSLL scl fe rcl FW� � � � �� ��  (18)

6) IEC standard specifying test methods for determining the 
efficiency and losses of rotating electrical machines (IEC 60034-2):

Fig. 1. Induction motor equivalent circuit.

TABLE I. 
DISTRIBUTION OF X1 AND X2 PARAMETERS ACCORDING TO NEMA 

CLASSIFICATION

Motor Class X1 X2

A 0.5 0.5

B 0.4 0.6

C 0.3 0.7

D 0.5 0.5

Rotor winding 0.5 0.5



Göztaş et al. In-Situ Efficiency Estimation of Induction Motors Using Whale Optimization Algorithm

119118

TEPES Vol 5., Issue. 2, 114-124, 2025

 P P P
kWSLL in fl
out� � �

�
�

�
�
�

�

�
�

�

�
�, . . log0 025 0 005

110  (19)

7) PFW Wind and Friction Losses:
PFW consists of two losses. The first of these is frictional loss, which 
occurs in the motor shaft and bearings. The second is wind loss, which 
is due to the motor cooling impeller. It is important to note that both 
frictional and wind losses vary quadratically with the speed of the induc-
tion motor. Furthermore, frictional and wind losses range from 5% to 
15% of the total losses, and they can be determined by a no-load run-
ning test [36]. In this study, the following approaches were used [19].

 
P P
P P
P P

FW

FW

FW

� �
� �
� �

2 5 2
1 2 4
1 0

. ,

. ,

.

,

,

,

% poles
% poles
%

in fl

in fl

in fll poles,6

 (20)

8) Objective and Fitness Function:
Real and imaginary components of current, input power, and power 
factor are used as objective functions. f1 is the ratio of the measured 
input current and the fundamental components of the estimated 
input current, f2 is the ratio of the measured input current and the 
imaginary components of the estimated input current, f3 is the ratio 
of the measured active input power and the estimated active input 
power, f4 is the ratio of the measured reactive input power and the 
estimated reactive input power [19].

 f
real I real I

real I
meas est

meas
1

1 1

1
�

� � � � �
� �

, ,

,
 (21)

 f
imag I imag I

imag I
meas est

meas
2

1 1

1
�

� � � � �
� �

, ,

,
 (22)

 f P P
P

in meas in est

in meas
3 �

�, ,

,
 (23)

TABLE II. 
NAMEPLATE DATA OF INDUCTION MOTORS

Power (kW) 22 30 132

VLL (V) 500 500 500

IL (A) 33.97 49.94 191.33

F (Hz) 50 50 50

Connection type Δ Δ Δ

Rated speed (rpm) 987 992 1493

NEMA design B A A

Number of poles 6 6 4

TABLE III. 
LOADED OPERATING EFFICIENCY VALUES OF MOTORS ACCORDING TO TEST REPORTS

22 kW

Load (%) V1 (V) I1 (A) Pi (W) Cos α Speed(rpm)  Po (W) Efficiency (%)

25% 500 17.22 6105 0.41 996 5477 89.7

50% 500 21.51 11 765 0.63 993 10 966 93.2

75% 500 27.13 17 516 0.74 989 16 452 93.9

100% 500 33.57 23 408 0.80 985 21 949 93.8

30 kW

Load (%) V1 (V) I1 (A) Pi (W) Cos α Speed(rpm)  Po (W) Efficiency (%)

25% 500 29.77 8590 0.33 998 7502 87.3

50% 500 34.43 16 240 0.54 995 14 979 92.2

75% 500 41.10 24 008 0.67 993 22 453 93.5

100% 500 49.17 31 919 0.75 991 29 907 93.7

132 kW

Load (%) V1 (V) I1 (A) Pi (W) Cos α Speed(rpm)  Po (W) Efficiency (%)

25% 500 97.43 36 554 0.43 1498 32 942 90.1

50% 500 121.53 69 528 0.66 1496 65 533 94.3

75% 500 153.76 103 013 0.77 1495 98 378 95.5

100% 500 190.83 137 171 0.83 1493 131 565 95.9
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 f meas est

meas
4

1 1

1
�

�� �
�

, ,

,
 (24)

 Fitness function : ff f f f1 1 2 3� � � �  (25)

III. RESULTS AND DISCUSSIONS
GA, PSO, WOA and RFO are used to determine the induction motor 
equivalent parameters, and the performance of these algorithms 
is compared. Three three-phase 380 V, 50 Hz, 22 kW, 30 kW, and 
132 kW induction motors are selected. The nameplate data of 
these motors are given in Table II. Only the data obtained from the 
experiments of the motors given in Table III were used for motor 
parameterization. The experimental data include a comprehensive 
set of data reflecting the performance of the motor at various load 
points.

The algorithms need an initial value for the stator resistance R1. This 
value is measured directly by direct current testing when the motor 

TABLE IV. 
PARAMETER SETTINGS OF THE ALGORITHMS

GA PSO WOA RFO

Population 
size = 200
Iteration 
number = 200
Mutation 
probability = 0.1
Crossover 
probability = 0.8

Particle 
number = 200
Iteration 
number = 200
C1 = C2 = 2
wmax = 0.9
wmin = 0.4

Population 
number = 200
Iteration 
number = 200

Population 
number = 200
Iteration 
number = 200
C1 = 0.18
C2 = 1
 

Fig. 2. Convergence of GA, PSO, RFO, and WAO algorithms.
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is not running. Then, during the identification process, the effect 
of temperature rise on the resistance is considered using thermal 
coefficients, and the R1 value is updated. Temperature correction is 
a critical factor affecting motor performance and is especially impor-
tant to provide more accurate predictions under high current loads. 
The other four parameters (X1, Xm, Rfe, and R2) will be determined 
through optimization algorithms. These parameters are the key com-
ponents used to build the equivalent circuit model of the motor and 
are necessary to calculate the performance and efficiency values of 
the motor accurately.

Equivalent circuit parameters are encoded as real numbers in the 
algorithm and included in the optimization process in this way. The 
parameter settings of the algorithms are the factors that directly 
affect the success of the optimization process, and these settings are 
given in Table IV. The choice of appropriate parameter settings plays 
a critical role, especially in finding the global minimum and avoiding 
the adverse effects of early convergence of the algorithms.

The error difference between the measured data and the values cal-
culated from the estimated parameters was the main criterion for 

calculating the fitness function. The fitness function in (25) was used 
to optimize parameters and estimate efficiency. The algorithms were 
run until a predetermined stopping criterion was reached. This cri-
terion usually depends on factors such as the number of iterations, 
the error value going below a specific limit value, or improving the 
solution stopping. Fig. 2 shows in detail the convergence behavior of 
the algorithms due to the efforts to find the optimum efficiency. In 
the analysis of the three motors, it was found that the PSO and WOA 
converged faster than the other algorithms. While the RFO algorithm 
converges quicker than GA, it still does not match the convergence 
speed of PSO and WOA. Overall, the GA algorithm tends to converge 
more slowly compared to the others. The PSO and WOA algorithms 
are noteworthy for their low error rates and quick convergence 
features.

Equivalent circuit parameters were generated by four different 
algorithms: GA, PSO, WOA, and RFO. The calculated values for the 
real and imaginary components of the motor current, input power, 
power factor, and output power at each load point were com-
pared with the experimentally measured data. The solution with 
the smallest error value among the obtained results was selected 

TABLE V. 
LOADING DATA OF THE MOTORS ACCORDING TO THE DATA OBTAINED FROM THE ALGORITHMS

22 kW

Load (%) Actual

PSO GA WOA RFO

Estimated Error Estimated Error Estimated Error Estimated Error

25 89.72 88.88 0.84 91.35 1.63 91.16 1.44 90.92 1.2

50 93.21 92.26 0.95 93.65 0.44 93.48 0.27 93.35 0.14

75 93.92 93.03 0.89 94.09 0.17 93.88 0.04 93.79 0.13

100 93.77 93.09 0.68 94 0.23 93.73 0.04 93.67 0.1

30 kW

Load (%) Actual PSO GA WOA RFO

Estimated Error Estimated Error Estimated Error Estimated Error

25 87.34 87.12 0.22 88.23 0.89 85.68 1.66 84.86 2.48

50 92.23 91.62 0.61 92.29 0.06 90.56 1.67 90.21 2.02

75 93.52 92.94 0.58 93.42 0.1 92.24 1.28 91.91 1.61

100 93.7 93.39 0.31 93.83 0.13 92.83 0.87 92.6 1.1

132 kW

Load (%) Actual PSO GA WOA RFO

Estimated Error Estimated Error Estimated Error Estimated Error

25 90.12 90.59 0.47 92.17 2.05 91.44 1.32 91.24 1.12

50 94.25 94.03 0.22 94.79 0.54 94.48 0.23 94.38 0.13

75 95.5 95.09 0.41 95.68 0.18 95.4 0.1 95.33 0.17

100 95.91 95.54 0.37 96.02 0.11 95.76 0.15 95.72 0.19
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as the optimum solution, and the motor efficiency was calculated 
based on this solution. Then, the corresponding efficiency values at 
different load points (100%, 75%, 50%, and 25% load) were calcu-
lated separately. Table V shows the predicted motor efficiencies and 
errors corresponding to different load points obtained for all three 
motors. Fig. 3 shows the efficiency errors of the results obtained 
from GA, PSO, WOA, and RFO algorithms. For a 22-kW motor, the 
WOA algorithm provides the highest accuracy, especially at medium 
and full load values. While PSO performs effectively at low load lev-
els, RFO achieves better results than WOA at low loads but shows 
average performance at other load levels. The GA has higher error 
rates and lower accuracy compared to other algorithms. For the 
30-kW motor, the GA algorithm exhibited the highest accuracy per-
formance by providing the lowest error rates at medium (50% and 
75%) and full (100%) load levels. The PSO algorithm showed the 
best performance at low load levels (25%) and moderate accuracy 
at other load levels. The WOA and RFO algorithms had higher error 
rates, especially at low and medium load levels, and showed lower 
accuracy performance compared to the other algorithms. For the 
132-kW motor, PSO provided the lowest error rate at low loads 
(25%). The RFO provided the best results at 50% load, while WOA 
provided the lowest error rate at 75% load. The GA performed best 
at full load (100%). While WOA and RFO generally performed simi-
larly at low and medium loads, PSO and GA were superior at cer-
tain loads. It is evident, therefore, that a load factor of 25% causes 
the error to rise for all methods. The motor is operating at a light 
load of 25%. Since the output power is low and the load point is far 
from the rated load, the losses are greater at this point, which is not 
advised because it is useless.

Fig. 4 compares estimated efficiency values with measured efficiency 
values using GA, PSO, WOA, and RFO. Each figure shows the perfor-
mance of the algorithms for different motor types and power ratings. 
For the 22-kW motor, the GA and PSO algorithms start with lower 
efficiency at the beginning (at low load) but approach the measured 
values as the load increases. The WOA and RFO algorithms converge 
to the measured values with a low error in general. For the 30-kW 
motor, the GA and PSO algorithms start with higher efficiency (at low 
load) and converge to the measured values as the load increases. 
However, WOA and RFO converge to the measured values with 
higher error values than the other two algorithms. For the 132-kW 
motor, the PSO algorithm predicts closer to the measured values at 
low loads. The RFO and WOA algorithms initially provide larger effi-
ciency estimates but converge to the measured values as the load 
increases. Although GA had a large error at 25% load, it performed 
better than PSO at other load levels.

As the load increases, the efficiency estimates of all algorithms con-
verge quite close to the measured values. In general, it is observed 
that RFO and WOA algorithms converge faster as the load increases, 
while the GA algorithm provides higher accuracy at a 30-kW motor. 
The overall agreement between the measured and estimated values 
shows that the prediction ability of the algorithms used is satisfac-
tory. The performance of the algorithms is tested not only under 
full load conditions but also under partial load conditions. This is an 
essential requirement, given that motors usually do not run at full 
load in real-world applications. The performance evaluation at par-
tial loads demonstrates the algorithms’ generalizability and ability 
to adapt to different operating conditions. The results demonstrate 

Fig. 3. Efficiency errors of the results obtained from GA, PSO, RFO, and WAO algorithms.
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both the accuracy and applicability of the algorithms used to opti-
mize the equivalent circuit parameters of the motor.

IV. CONCLUSIONS
The efficiency estimation of induction motors was analyzed using four 
optimization algorithms: GA, PSO, WOA, and RFO. Experimental stud-
ies were conducted on three induction motors with 22 kW, 30 kW, and 
132 kW power ratings at 25%, 50%, 75%, and 100% load points. PSO 
and WOA algorithms stand out with their fast convergence proper-
ties, while RFO showed a slightly slower but still better convergence 
performance than GA. Although the GA algorithm provided slower 
convergence in general, it offered high accuracy, especially for the full 
load conditions of the 30-kW motor and 132-kW motor. For the 22-kW 
motor, WOA gave the best results at full and medium loads, while PSO 
showed superior performance at low loads. For the 132-kW motor, 
PSO provided the lowest error rate at low loads, RFO at medium, and 
WOA at 75% loads. As the load increased, the prediction accuracies 

of all algorithms became more consistent with the experimental data, 
and it was observed that the error rates increased at low loads (espe-
cially at 25% load). In general, the algorithms were found to be suc-
cessful in optimizing the motor equivalent circuit parameters in terms 
of both accuracy and applicability.

The results highlight the importance of choosing the right algorithms 
based on motor power and operating load conditions. Furthermore, 
they demonstrate that non-intrusive efficiency estimation methods 
offer significant advantages in industrial applications. These methods 
provide accurate results, reduce downtime, identify low-efficiency 
motors, and enhance energy management.

Availability of Data and Materials: The data that support the findings of this 
study are available on request from the corresponding author.
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Fig. 4. Efficiency errors of the results obtained from GA, PSO, RFO, and WAO algorithms.
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