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ABSTRACT

An accurate solar energy forecast is important for the efficient operation of smart grids, especially with the increasing penetration of renewable energy sources. 
This paper proposes a hybrid forecasting approach that combines long short-term memory (LSTM) neural networks with autoregressive integrated moving 
average (ARIMA) models to improve the accuracy of short-term solar energy predictions. While ARIMA effectively captures linear temporary dependence, 
LSTM networks are powerful in nonlinear and long-distance pattern modeling. By integrating these two models, the proposed hybrid approach takes advantage 
of their complementary strengths to stop and address nonlinearity. The model is trained and tested on real-world solar power data collected from the grid-
connected photovoltaic system. The evaluation metrics, such as mean absolute error, root mean squared error, and mean absolute percentage error, perform 
better than stand-alone ARIMA and LSTM models in the hybrid model, outpacing accuracy. Results outline the ability of hybrid intelligent models to increase 
the prediction of solar energy, contributing to more stable and reliable smart grid operations.

Index Terms—Autoregressive integrated moving average (ARIMA), hybrid models, long short-term memory, solar power forecasting, smart grids

I. INTRODUCTION
The increasing attention to eco-friendly energy sources has brought 
about an exponential increase in the installation of solar photo-
voltaic (PV) systems [1]. Solar energy, being a clean, inexhaustible 
source of power, has an intermittent nature of energy generation, 
which creates big challenges for power system operators, especially 
in smart grid environments where balancing demand and supply 
in real time is paramount [2]. There is a need for short-term solar 
power forecasting in order to ensure grid stability, better energy 
management, and a reduction in conventional backup generation 
[3]. However, these models may not be suitable for all types of data, 
especially when the data shows nonlinear patterns or seasonal 
variations. However, these methods seldom capture the random 
fluctuations with complex interactions typical of solar power gener-
ation data. Contrastingly, certain deep learning methods are known 
to do well with nonlinear time-dependent patterns; in particular, 
these fall into one category of recurrent networks known as the 
long short-term memory (LSTM) networks [4,5]. The LSTM also has 

limitations, so researchers have considered enhancement through 
hybridization with other techniques, for example, neural attention 
or convolutional neural networks, to improve both performance 
and interpretability.

The studies propose a hybrid forecasting technique that mixes the 
ARIMA and LSTM techniques to make use of the quality of both mod-
eling paradigms: linear and nonlinear. The method starts with ARIMA 
modeling to capture linear developments of solar energy statistics, 
accompanied by the use of LSTM to address them. To address the 
limitations of stand-alone statistical or deep learning approaches, 
this study introduces a hybrid ARIMA-LSTM framework that lever-
ages the strengths of both models for accurate and reliable solar 
power forecasting in smart grid environments.

There is a fair amount of literature that has considered solar fore-
casting using statistical or machine learning one-off approaches 
(including independent hybrid approaches). Still, there is limited 
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consideration of ARIMA and LSTM in a framework of residual learn-
ing devised specifically for ease in real-time smart grid operation. 
While previous use of hybrid methods had a less clear separation 
of predictable, structured trends with linear and nonlinear com-
ponents, a sequential decomposition approach of ARIMA for the 
structured linear trends is proposed, with the data subsequently 
passed to an LSTM for residual, nonlinear terms proposed, with 
the data. Consequently, this research is not only a step toward real, 
more accurate forecasts, but it is also a computationally efficient 
method that would enhance the implementation of hybrid methods 
to advance real-time operating grid forecasting, which has not been 
accomplished with previous hybrid approaches.

A. Research Gap
While hybrid forecasting methods do exist, the majority of 
approaches either integrate linear and nonlinear behaviors in a 
black-box model or do not scale to smart grid environments. In addi-
tion, rigorous evaluation of the residual learning framework in con-
junction with strict decomposition has not been conducted on real 
solar PV data. This research fills these gaps by:

•	 Developing a structured hybrid ARIMA-E-LSTM framework 
whereby the LSTM is explicitly trained on the ARIMA residuals 
to enhance model interpretability and accuracy.

•	 Evaluating the hybrid ARIMA-LSTM framework and illustrating 
significant accuracy gains relative to other non-hybrid models, 
such as with mean absolute error (MAE) = 1.30 on real-world 
smart grid data.

•	 Additional practical value can be provided by going through the 
complexity-performance trade-offs associated with hybrid decom-
position, which is important for use in smart grids in real-time.

II. METHODS
Recent research in solar energy forecasting has focused on integrat-
ing various modeling approaches to improve accuracy. Traditional 
statistical models such as Holt-Vinti and seasonal ARIMA (SARIMA) 
have been used to model seasonal solar power data, especially in 
areas with strong daily and seasonal radiation cycles. For example, 
Melit and Kalogirou [6] demonstrated the use of time-series mod-
els for solar radiation forecasting in the Mediterranean climate. 

Machine learning methods, such as support vector machines (SVMs) 
and random forests, have shown promise in improving the accuracy 
of solar energy forecasts. Khosravi et al. [7] PV output is detected 
with the use of dress learning to address uncertainty in prediction.

These models are particularly effective in identifying complex rela-
tions in historical data, but comprehensive feature engineering and 
tuning may be required. In addition, they are often limited by their 
inability to model sequential dependence effectively, which is impor-
tant for time-dependent energy systems. For example, Zeng and 
Kiao [8] introduced a wavelet transform-based hybrid model, which 
combines SVMs with statistical methods to handle noise and non-
stationarity in the solar dataset.

Hybrid models that combine multiple forecasting techniques have 
been proposed as a solution to these boundaries. However, these 
methods often struggle with sudden changes caused by weather 
variability, making them insufficient for reliable short-term pre-
dictions in the dynamic smart grid environment. Ahmed et al. [9] 
extended SARIMA approaches by incorporating meteorological vari-
ables, but results showed limited scalability to different geographical 
conditions. In this context, the deep belief network (DBNs) [10] and 
models promoting the shield [11] have also been investigated for 
their strength and generalization capabilities, which are accompa-
nied by an increase in computational complexity. Hybrid models that 
combine multiple forecasting techniques have been proposed as a 
solution to these boundaries. For example, Zeng and Kiao [8] intro-
duced a wavelet transform-based hybrid model, which combines 
SVMs with statistical methods to handle noise and non-stationarity 
in the solar dataset. Other researchers have integrated fuzzy logic, 
optimization algorithms, and neural networks to increase perfor-
mance [12]. Recently, Das et  al. [13] despite these efforts, in this 
study, proposed stronger hybrid architecture, inspiring the develop-
ment of the same stronger hybrid architecture, is basically an inter-
val in the integrated model, which efficiently handles both linear and 
nonlinear patterns. Recent improvements in renewable electricity 
forecasting have more and more followed hybrid and deep mas-
tering processes to cope with limitations in accuracy and statistical 
complexity. Khan et al. [14] proved the effectiveness of deep LSTM 
networks mixed with data preprocessing strategies for solar strength 
prediction, achieving improved accuracy on real international data-
sets. Zhang et al. [15] proposed a hybrid ARIMA-LSTM model particu-
larly for wind speed forecasting, showing that combining statistical 
and neural network-based models improves generalization.

Ahmad et  al. [16] delivered a CNN–BiLSTM (Convolutional Neural 
Networks-Bidirectional Long Short-Term Memory) framework for 
PV power forecasting, where convolutional layers had been used to 
extract temporal-spatial capabilities before sequential prediction, 
resulting in huge overall performance gains. In any other method, 
Shao et  al. [17] applied a wavelet-transformed input shape mixed 
with gated recurrent gadgets (GRUs) for day-in-advance solar fore-
casting, achieving higher adaptability to non-stationary time-series 
information. Mahapatra et  al. [18] furnished a complete evalua-
tion of hybrid deep neural networks, highlighting their applicabil-
ity in dynamic power demand environments. Additionally, Fang 
et  al. [19] integrated interest mechanisms with LSTM models and 
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Main Points

•	 A hybrid model combining long short-term memory (LSTM) 
networks and autoregressive integrated moving average 
(ARIMA) is proposed for accurate solar power generation 
forecasting in smart grids.

•	 The approach captures both nonlinear temporal patterns 
and linear trends for improved predictive performance.

•	 The proposed hybrid method outperforms stand-alone LSTM 
and ARIMA models in terms of root mean squared error and 
mean absolute error metrics.

•	 The system provides better short-term forecasts, enabling 
more reliable smart grid energy management.

•	 The hybrid approach ensures adaptability to dynamic envi-
ronmental conditions and improves forecast robustness.
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meteorological inputs for solar energy prediction, accomplishing 
superior interpretability and accuracy over traditional deep learning 
techniques. This current research collectively helps use hybridized 
deep learning models for more accurate and adaptive power fore-
casting in smart grids.

Over the last few years, advanced hybrid approaches have also 
explored new combinations of deep learning, solutions using statis-
tics, and attention-based approaches that benefit solar forecasting. 
Sahoo et  al. [20] developed an LSTM-CNN hybrid, which was opti-
mized for microgrid optimization in solar energy cost predictions, that 
takes advantage of local spatial-temporal characteristics associated 
with seasonal influences within the data for short-term forecasting 
applications. Wang et  al. [21] also proposed a transformer predic-
tion framework that included all available meteorological factors and 
showed success in predicting solar activity data with varying degrees 
of changes in weather conditions, with high levels of error variance.

Additionally, Chen et  al. [22] presented and tested a GRU model 
that was enhanced by an attention mechanism that responsively 
accounted for the abundance and loss of incoming solar irradi-
ance and demonstrated generalized high performance across many 
regions. Ali et  al. [23] wanted to contrast black-box neural-based 
hybrids as compared to residual decomposition-based models. 
When using structured residual learning approaches—similar to the 
one explored here—they indicated that the residual components 
offered advantages for interpretability and error localization. Kaur 
et al. [24] presented the deployment of deep hybrid solar forecasting 
models for utility-grade smart grids, with recommendations regard-
ing low latency and modular development. Just the year before, 
Hossain et al. [25] introduced the adaptive LSTM with attention and 
transfer learning for high-resolution forecasting to degrees of high 
complexity and a loss of modularity.

Nevertheless, while these advancements are evident, the vast major-
ity of current models employ either black-box types or over-focus on 
accuracy, potentially limiting real-time use applications. This study 
proposes the use of structured residual modeling, where ARIMA 
provides a deterministic trend model and the LSTM accounts for the 
nonlinear distilling of the residuals. This new decomposition better 
handles accuracy, interpretability, and computational feasibility for 
real-world grid forecasting applications.

For wind speed prediction, Zhang et  al. [15] proposed a hybrid 
model of both ARIMA and LSTM using raw data with a joint training 
approach. A key difference with the method is the explicit use of 
residual decomposition, which aids in interpretability and likelihood 
of performance (particularly in the non-stationary conditions of solar 
power). While the external features used by Zhang et al. were lim-
ited, the proposed model utilized both meteorological variables and 
time features, which would demonstrate both better generalization 
and real-time adaptability of the model for solar forecasting.

While previous studies have referenced hybrid models, there are 
few examples of an architecture that is residual-driven, where 
ARIMA is first used to capture deterministic trends as the first model, 
and where the LSTM is explicitly trained on the residuals from the 

prediction of the ARIMA model. This type of layering is advantageous 
because it provides interpretability as ARIMA and the LSTM are alter-
nating, but also restricts overfitting and obtains robustness through 
volatile solar conditions. It is unlike the general black-box hybrids 
reported in the literature.

III. RESULTS
The proposed hybrid forecasting model combines the complemen-
tary strengths of ARIMA and LSTM neural networks to achieve more 
accurate solar power predictions. The ARIMA excels at capturing lin-
ear trends and seasonal patterns in time-series data, while LSTM is 
designed to model complex nonlinear relationships and long-term 
dependencies. This hybrid approach offers enhanced prediction per-
formance by addressing both linear and nonlinear components of 
solar power generation.

A. Data Preprocessing
The forecasting framework begins with the collection and prepro-
cessing of historical solar power generation data, which includes 
normalization, handling missing values, and temporal feature engi-
neering (e.g., extracting hour-of-day, day-of-week, and solar eleva-
tion angle). The dataset is then split into training and testing sets in a 
time-consistent manner to preserve sequence integrity.

B. Autoregressive Integrated Moving Average Component
In the first stage, an ARIMA model is trained on the normalized solar 
power data. The model parameters (p, d, q) are selected based on 
the autocorrelation function (ACF), Partial ACF, and Akaike informa-
tion criterion (AIC). The ARIMA model captures the linear component 
of the solar power output. The proposed hybrid forecast models are 
designed to leverage the complementary strengths of ARIMA and 
LSTM neural networks for more accurate solar energy prediction. 
The ARIMA is an expert in capturing linear trends and seasonal pat-
terns in time-series data, while LSTM is capable of modeling complex 
nonlinear relationships and long-term dependence. The model fol-
lows a two-step architecture, as illustrated in Fig. 1.

C. Residual Extraction
Once the ARIMA forecast arises, the residual chain is calculated by 
reducing the ARIMA output from the real values. These remain have 
nonlinear components that ARIMA cannot capture.

D. Long Short-Term Memory Modeling
The residues are used to train the LSTM network, which learns the 
underlying nonlinear dependence. The LSTM architecture consists of 
an input layer and one or more hidden LSTM layers, with a drop-
out regularization to avoid overfitting and a dense output layer. 
The model is trained using a sliding window approach with a suit-
able sequence length to catch cosmic dependence. Once the ARIMA 
model is applied and its forecast ŷt

ARIMA is obtained, the residual 
series et is computed as:

	 e y yt t t� � ˆARIMA 	 (1)

Here, yt is the actual solar power at time t, and ŷt
ARIMA is the ARIMA 

prediction at time t. The LSTM model is trained on the residual 
sequence {et − 1, et − 2, …, et − n}, using a sliding window approach, to 
predict the nonlinear component of the forecast êt

LSTM:
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	 ˆ , , ,e e e et t t t n
LSTM LSTM� �� �� � �1 2 	 (2)

The final hybrid forecast ŷt  is obtained by combining the ARIMA fore-
cast and the LSTM predicted residual:

	 ˆ ˆ ˆ �y y et t t� �ARIMA LSTM 	 (3)

This architecture allows the hybrid model to capture both the linear 
trend (via ARIMA) and nonlinear variations (via LSTM) in the solar 
power time series.

E. Hybrid Forecast Output
The final forecast ARIMA prediction and LSTM-pre-residue are briefly 
obtained. This hybrid approach allows the model to reorganize 
both linear and nonlinear components present in the original solar 
power data.

F. Evaluation Matrix
The model’s performance is evaluated using the standard error 
matrix, which means MAE, root mean squared error (RMSE), and 

absolute mean absolute percentage error (MAPE). These matrices 
are ​​used to compare hybrid models against Stand-alone ARIMA and 
LSTM models, which demonstrate the effectiveness of the hybrid 
approach in improving forecast accuracy.

Let:

•	 yi: Actual solar power at the time t
•	 ŷi

ARIMA Forecast from the ARIMA model at time t
•	 � � �t t ty� ˆARIMA  Forecast of residual from LSTM
•	 Residual (nonlinear component)
•	 etLSTM Forecast of residual from LSTM
•	 ˆ ˆ ˆy y et t t� �ARIMA LSTM Final forecasted value at time t

Final hybrid forecast

Step 1: ARIMA forecasting

The ARIMA (p, d, q) model predicts the linear component using the 
following equation:

	 � � � � ���
�

�

�
� �� � � � ��t i

i

p

j t j t

j

q

t ic
1 1

	 (4)

Where:

•	 y: Differenced time series (after d differencing steps)
•	 ϕi: Autoregressive coefficients
•	 θj: Moving average coefficients
•	 εt: White noise error
•	 c. Constant term

Step 2: Residual calculation

The residual (nonlinear part) is obtained as:

	 e y bt t t� � ˆARDIA 	 (5)

Step 3: LSTM-based residual forecasting

The LSTM model learns from previous residuals and forecasts the 
nonlinear component:

	 ˆ , , ,e e e et t t t n
LSTM LSTM� �� �� � �1 2 	 (6)

Where:

•	 n: Sequence length (look-back window)
•	 LSTM: Trained network that captures temporal dependencies in 

residuals

Step 4: Final hybrid forecast

The final forecast is the sum of the ARIMA prediction and LSTM pre-
dicted residual as in (3).

The hybrid ARIMA-LSTM model architecture diagram visually repre-
sents the workflow of combining ARIMA and LSTM models for solar 
power forecasting.

Fig. 1. Hybrid ARIMA-LSTM model architecture.
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Data collection (step 1): This is the initial step in collecting historical 
solar power generation data from a grid-connected PV system.

Data preprocessing (step 2): The collected data is preprocessed to 
handle missing values, reduce noise, and normalize the data, ensur-
ing it’s ready for modeling.

ARIMA model (step 3): The ARIMA is applied to capture the linear 
trends and seasonality in the solar power generation data. The out-
put from ARIMA represents the linear component of the time series.

LSTM model (step 4): The residuals (nonlinear components) left after 
the ARIMA model are passed through an LSTM model. The LSTM net-
works are excellent at capturing nonlinear patterns and long-range 
dependencies in time-series data.

Hybridization (step 5): The predictions from the ARIMA model (lin-
ear) and the LSTM model (nonlinear) are combined to produce a 
hybrid forecast. This hybrid approach combines the strengths of both 
models to improve accuracy and robustness.

Post-processing (step 6): The final forecast is processed to ensure 
smoothness and adjust any irregularities or outliers in the predictions.

Evaluation (step 7): The hybrid ARIMA-LSTM model architecture dia-
gram represents the workflow of the ARIMA and LSTM versions for 
visual solar energy forecasting.

IV. DISCUSSION
A. Data Description and Preprocessing
The dataset analyzed in this study was compiled from a grid-con-
nected PV system located at Port Moresby, Papua New Guinea, that 
spanned January 1, 2020–December 31, 2022. The data granularity 
was at an hourly resolution. The dataset contained solar power out-
put (kW), global horizontal irradiance (W/m2), ambient temperature 
(°C), relative humidity (%), wind speed (m/s) and cloud cover (frac-
tional), solar elevation and azimuth angles. The data set underwent 
a cleaning and preprocessing enrichment process prior to applying 
the forecasting models. The method employed to interpolate the 
missing data points was univariate linear interpolation. All numerical 
features were normalized using min-max scaling. Furthermore, new 
temporal features, including an hour of the day, day of the week, and 
indicators of seasonal starting times, were engineered to help the 
time-series models capture underlying learning patterns. The data 
set was then split into 80% and 20% in a time sequence for the train-
ing and test set, respectively.

B. Model Performance Evaluation
The performance of the hybrid ARIMA-LSTM model was compared 
against two stand-alone models: ARIMA and LSTM. The models were 
evaluated using three common metrics:

	 MAE � �
�
�1

1
n

y y
i

n

i î 	 (7)

Where, yi is the Actual value, ŷi  is the predicted value, and n is the 
number of data points.

	 RMSE � ��
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�
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i

n
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i

ˆ
	 (8)

	 MAPE � �

�
�100

1

% ˆ

n
y y
y

i

n

i i

i

	 (9)

The results of the evaluation are presented in Table I below:

As shown in Table I, the hybrid ARIMA-LSTM model significantly out-
performs both the ARIMA and LSTM models in terms of all evalua-
tion metrics. Specifically:

Fig. 2 explains the performance of the three models, ARIMA, LSTM, 
and hybrid ARIMA-LSTM turned, to evaluate the usage of three 
key metrics: MAE, RMSE, and MAPE. The hybrid ARIMA-LSTM ver-
sion demonstrated superior overall performance across all metrics 
compared to the stand-alone ARIMA and LSTM models. Specifically, 
the MAE for the hybrid ARIMA-LSTM model was 1.30, lower than 
each LSTM (1.80) and ARIMA (2.15), indicating that the hybrid model 
makes the most correct predictions. Similarly, the RMSE for the 
hybrid model became 2.20, which changed into additionally the low-
est, outperforming LSTM (2.95) and ARIMA (3.45). Finally, in terms 
of MAPE, the hybrid ARIMA-LSTM version again had a nice perfor-
mance, achieving a price of 3. Around 80%, which is substantially 
lower than LSTM (4.60%) and ARIMA (5.20%). These effects highlight 
the effectiveness of mixing ARIMA’s potential to capture linear ten-
dencies and LSTM’s power in modeling nonlinear residuals, leading 
to more accurate and dependable forecasts for solar strength tech-
nology. The assessment demonstrates that the hybrid ARIMA-LSTM 
model presents more specific predictions, making it a promising tool 
for strength forecasting in smart grids.

C. Visual Comparison: Actual vs. Predicted Values
To further evaluate the models, the actual solar power genera-
tion values and the corresponding predicted values from the three 
models (ARIMA, LSTM, and hybrid ARIMA-LSTM) are compared 
graphically.

The ARIMA predicted vs. actual solar power generation in Fig. 3 
compares the actual solar power generation with the expected val-
ues from the ARIMA version over a specific period. In this case, the 
real solar strength technology (represented via the solid black line) 

TABLE I. 
MODEL EVALUATION VALUES

Model MAE RMSE MAPE

ARIMA 2.15 3.45 5.20%

LSTM 1.80 2.95 4.60%

Hybrid ARIMA-LSTM 1.30 2.20 3.80%

ARIMA, autoregressive integrated moving average; LSTM, long short-term mem-
ory; MAE, mean absolute error; MAPE, mean absolute percentage error; RMSE, 
root mean squared error.
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fluctuates based on elements such as time of day and climate condi-
tions, as expected in solar power production. The ARIMA model’s 
predictions (represented with the aid of the dashed blue line) are 
plotted alongside the real values to show how well the model fore-
casts the solar power era. As visible in the figure, the ARIMA ver-
sion is capable of capturing the general trend and cyclical nature 
of the statistics but has some difficulty in accurately predicting the 
smaller fluctuations, in particular at some points of rapid adjust-
ments in solar strength technology. For instance, at some point in 
positive hours in which there are abrupt adjustments, the antici-
pated values from the ARIMA model diverge slightly from the facts. 
This conduct displays the ARIMA model’s power in shooting linear 
tendencies; however, it has barriers in forecasting nonlinear patterns 
and sharp fluctuations that are typical in solar electricity generation. 
While ARIMA gives an affordable approximation of solar strength era 
developments, its predictions won’t continually replicate sudden or 
irregular adjustments, such as the ones due to climate conditions. 
This illustrates the potential advantage of mixing ARIMA with differ-
ent strategies, which include LSTM, to improve prediction accuracy 
for time-collection information like solar energy technology.

The LSTM predicted vs. actual solar power generation visualized 
in Fig. 4 shows how well the LSTM model predicts solar electricity 

generation through the years. The real solar electricity generation 
(represented by the solid black line) varies due to elements like day-
light depth, time of day, and environmental conditions. The LSTM 
version’s predictions (represented through the dashed red line) are 
plotted along the actual values to examine the accuracy of the pre-
dictions. From the graph, it is evident that the LSTM version is more 
able to capture the nonlinear patterns in the solar power technol-
ogy records than simpler methods like ARIMA. The LSTM, a sort of 
recurrent neural network, excels at studying past time-series data 
and identifying complex temporal dependencies. This lets it make 
extra correct predictions, especially throughout hours in which the 
facts exhibit large modifications or fluctuations. For example, the 
LSTM version is capable of complying with the developing and fall-
ing developments in solar power generation with more precision, 
even at some stage in greater rapid shifts within the records. While 
there are nevertheless some minor discrepancies between the real 
and predicted values, LSTM plays nicely at taking pictures of each of 
the smooth traits and the abrupt variations, which is regularly tough 
for traditional statistical models like ARIMA. This figure highlights 
that LSTM is a sturdy candidate for forecasting solar energy genera-
tion, mainly when the records involve complicated, nonlinear styles. 
However, like all predictive models, LSTM may additionally struggle 
with severe anomalies or outliers in the statistics, and hybrid tech-
niques ought to similarly enhance overall performance.

The hybrid ARIMA-LSTM predicted vs. actual solar power genera-
tion, in Fig. 5, compares the real solar energy era with the predic-
tions made by way of the hybrid ARIMA-LSTM model over a targeted 
period. The real solar power era (represented by the strong black 
line) fluctuates in keeping with various factors, including time of 
day, solar light intensity, and climate conditions. The hybrid ARIMA-
LSTM predictions (represented by means of the dashed green line) 
are shown alongside the actual values, reflecting how the version 
forecasts the power technology. In this situation, the hybrid ARIMA-
LSTM model combines the strengths of both the ARIMA model and 
the LSTM version to seize each of the linear developments and the 
nonlinear fluctuations in the solar electricity era data. The ARIMA 
version is responsible for capturing the overall fashion and seasonal-
ity, even as the LSTM factor makes a specialty in forecasting the resid-
uals or the nonlinear components that ARIMA might not be able to 

Fig. 2. Performance evaluation of ARIMA, LSTM, and hybrid 
ARIMA-LSTM.

Fig. 3. ARIMA predicted vs. actual solar power generation.

Fig. 4. LSTM predicted vs. actual solar power generation.
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predict. The figure suggests that the hybrid ARIMA-LSTM model is a 
mile closer to the actual values than character models like ARIMA or 
LSTM alone. This is obvious in the way the expected values (inexperi-
enced dashed line) closely match the actual solar energy generation 
(black solid line), taking pictures of each of the clean trends and the 
abrupt modifications in solar output. The hybrid technique results in 
higher prediction accuracy and robustness, mainly throughout dura-
tions, where solar energy generation suggests speedy fluctuations or 
nonlinear behavior. This graph successfully illustrates how the hybrid 
ARIMA-LSTM model balances the strengths of linear and nonlinear 
forecasting models to provide extra accurate and reliable predic-
tions, making it a great tool for time-series forecasting in dynamic 
environments, along with smart grids.

Fig. 6 visualizes the assessment of actual solar power generation and 
the predictions made by means of three different fashions: ARIMA, 
LSTM, and the hybrid ARIMA-LSTM. Actual Solar Power (black line 
with circles) represents the real solar power technology values dis-
covered over time. This fluctuates primarily based on diverse exter-
nal factors, including time of day, climate conditions, and solar light 
intensity. ARIMA Predicted Solar Power (blue dashed line with “x” 
markers) shows the forecasted values generated with the aid of 
the ARIMA model, which, in the main, captures linear trends and 

seasonality. While ARIMA performs reasonably well at predicting the 
overall fashion, it could fail to capture abrupt, nonlinear fluctuations. 
LSTM Predicted Solar Power (pink dashed line with “x” markers) rep-
resents the values anticipated by means of the LSTM version. LSTM 
excels at modeling nonlinear trends and can expect more compli-
cated patterns, specifically when solar power generation modifica-
tions rapidly due to climate conditions or other abnormal factors. 
Hybrid ARIMA-LSTM Predicted Solar Power (inexperienced dashed 
line with “x” markers) combines the strengths of ARIMA and LSTM, 
resulting in a more accurate prediction. The hybrid model captures 
each linear trend (from ARIMA) and nonlinear fluctuations (from 
LSTM), providing the most accurate forecast of the three. As is glaring 
from the graph, the hybrid ARIMA-LSTM model (green) closely tracks 
the actual solar strength era (black), outperforming both ARIMA 
(blue) and LSTM (crimson). The hybrid technique is capable of effi-
ciently predicting each of the smooth tendencies and abrupt fluctua-
tions in solar strength, demonstrating its suitability for time-series 
forecasting in smart grids. This figure, in reality, illustrates the predic-
tive skills of each version and the way combining ARIMA and LSTM 
can enhance the accuracy of forecasting in the solar electricity era.

D. Impact of Hybridization

The hybridization of the ARIMA and LSTM models leverages the 
strengths of each procedure, resulting in the hybrid ARIMA-LSTM 
model that correctly addresses each linear and nonlinear style in 
time-series data. ARIMA, as a statistical model, is talented at cap-
turing the linear fashion and seasonality within the records, making 
it nicely suitable for forecasting predictable patterns, which include 
daily cycles in the solar energy era. On the other hand, the LSTM 
model, a type of recurrent neural network, is designed to handle 
nonlinear components by forecasting the residuals that are left after 
ARIMA’s predictions, making LSTM particularly effective at captur-
ing dynamic fluctuations in solar power generation caused by irregu-
lar events, such as weather changes. By combining the strengths of 
these two fashions, the hybrid ARIMA-LSTM version substantially 
reduces forecasting mistakes, especially during durations of high 
fluctuations in solar energy output. This is important for dynamic 
systems like smart grids, where solar power technology is a prob-
lem for each predictable style (e.g., the daylight cycle each day) and 
unpredictable variations (e.g., surprising weather modifications, 
cloud cover). Thus, the hybrid ARIMA-LSTM model offers a better 
and correct solution for forecasting solar energy generation, mak-
ing it exceptionally treasured for programs in smart grids, where the 
capability to forecast both solid and risky components is vital for 
green energy control and grid balance.

E. Computational Complexity
The computational complexity of the fashions was evaluated to 
assess the trade-off between accuracy and computational cost. The 
hybrid ARIMA-LSTM version, while more computationally intensive 
than the character fashions, gives a favorable balance among those 
factors. The ARIMA, being a simple statistical version, is rapid to 
compute but struggles with accuracy, mainly when the data reveals 
complicated styles or nonlinearities. On the other hand, LSTM, 
though requiring significantly more computation because of its deep 
learning architecture, is adept at capturing the nonlinear depen-
dencies in time-collection data. The hybrid ARIMA-LSTM version 

Fig. 5. Hybrid ARIMA-LSTM predicted vs. actual solar power 
generation.

Fig. 6. Hybrid ARIMA-LSTM Predicted vs. Actual Solar Power 
Generation, ARIMA and LSTM. 
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combines the strengths of each method, ensuring that it captures 
each linear development (from ARIMA) and nonlinear fluctuations 
(from LSTM). While the hybrid version calls for more computational 
assets, the trade-off between accuracy and computational cost is 
minimal, supplying a strong solution for time-series forecasting in 
dynamic systems like clever grids. The total training time for the 
hybrid ARIMA-LSTM model, which, even though higher than in the 
assessment of individual models, stays appropriate for actual-time 
forecasting applications, while the model is optimized for deploy-
ment. With suitable optimization and hardware, the hybrid model 
can obtain green overall performance in real international scenarios, 
in which short and correct predictions are essential for operational 
decision-making in electricity systems.

F. Practical Implications
The hybrid ARIMA-LSTM framework can noticeably improve the 
accuracy of solar power era forecasts in smart grids, which is impor-
tant for efficient power control. In dynamic and allotted energy 
systems, in which renewable assets like solar power are variable, 
accurate forecasting becomes important to maintain grid stability 
and optimize electricity utilization. The model’s capability to forecast 
both linear tendencies (through ARIMA) and nonlinear fluctuations 
(through LSTM) allows for extra unique predictions, especially for the 
duration of intervals of excessive variability in solar electricity out-
put. By providing extra reliable forecasts, the hybrid ARIMA-LSTM 
model can help in balancing grid hundreds, ensuring that supply 
and demand for electricity are better aligned, which is, in particular, 
essential in clever grids, in which integration of renewable energy 
sources, together with solar, is essential for reducing reliance on fos-
sil fuels and accomplishing sustainable power desires.

Furthermore, accurate forecasting facilitates optimizing the storage 
of excess strength generated during top solar hours, consequently 
minimizing energy wastage. The version can be deployed in real-time 
applications for solar electricity generation forecasting, allowing 
progressive decision-making and facilitating the optimization of grid 
operations. By offering accurate and well-timed forecasts, the hybrid 
ARIMA-LSTM model can help grid operators count on adjustments in 
the solar strength era, modify power generation systems, and ensure 
regular power delivery, even though the solar strength technology is 
fluctuating. The time efficiency of the version, particularly while opti-
mized for real-time execution, makes it a viable solution for opera-
tional use in smart grids, contributing to the dependable integration 
of renewable power sources and ensuring grid balance. Due to its 
excellent accuracy, low-latency architecture, and ability to take into 
account actual solar fluctuations, this proposed hybrid model is a 
viable candidate for deployment on a smart grid forecasting system 
as a product in edge or cloud computing configuration.

G. Execution Environment
The hybrid forecasting model was implemented in Python 3.10 with 
the following main libraries:

•	 Stat models for ARIMA modeling
•	 TensorFlow 2.12 and Keras for the LSTM implementation
•	 NumPy, Pandas, and Matplotlib for data management and 

plotting

All experiments were run on a machine with the following 
specifications:

-	 CPU: Intel Core i7-11800H @ 2.30GHz RAM: 32 GB
-	 GPU: NVIDIA GeForce RTX 3060 (6GB)
-	 Operating System: Windows 11 Pro 64-bit

The average length of time taken by the LSTM to train was on the 
order of 22 seconds/epoch, with 50 epochs needed for convergence 
on a dataset. The ARIMA model training and parameter tuning (p, d, 
q using AIC) also took less than 2 minutes.

For each instance (i.e., new hourly input), the complete forecasting 
time was less than 0.2 seconds. This suggests that the model can 
work for near real-time inference when deployed on equivalent 
hardware, or is optimized to run on an edge computing environ-
ment. In the future, the exploration will include integrating small-
scale meteorological parameters such as the solar zenith angle, 
dew point, UV index, and cloud ceiling height from satellites or field 
sensors. Additionally, adaptive learning for the hybrid model will be 
investigated to enable auto-tuning based on data drift and real-time 
load patterns. Uncertainty quantification and explainable AI tech-
niques will also be explored to help improve trust in and deployment 
of smart grid platforms.

V. CONCLUSION
This dissertation presented a highly innovative hybrid forecasting 
methodology that incorporated ARIMA and LSTM neural networks 
for short-term solar power forecasting in a smart grid application. 
The motivation was based on the theory that both statistical and 
deep learning methods are likely to provide inaccurate forecasts 
if they can only model either linear or nonlinear dynamics. As a 
way of overcoming this possible limitation, it was proposed that 
a two-stage architecture could be created whereby the linear 
components could be modeled with the ARIMA method and the 
nonlinear aspects modeled with LSTM. This residual-based hybrid-
ization was proposed as a practical way of taking the best of both 
worlds from statistical and deep learning models. The hybrid model 
was evaluated on real-world solar power data, and the forecasting 
accuracy of the hybrid was compared to stand-alone ARIMA and 
LSTM using evaluation metrics of forecasting accuracy, e.g., MAE, 
RMSE, and MAPE. In all evaluations, the results substantiated the 
promise of accurately and robustly forecasting solar power genera-
tion due to the hybrid models’ forecast performance compared to 
the ARIMA and LSTM models, with accuracy improvements of 40% 
lower in MAE, compared to the ARIMA model, and 28% lower in 
MAPE, compared to the LSTM model. Visual comparisons further 
substantiated that the hybrid model’s forecasts were consistently 
very close to the actual solar power generation, especially with 
dynamic generation periods, which exhibited rapid movement on 
the forecast timeframe. In addition to accuracy, the hybrid mod-
el’s computational complexity and practicality were discussed. It 
requires more resources than potential alternate models, but the 
benefits of its superior performance and the ability to be practically 
deployed in real time in smart grid contexts easily justify this trade-
off. The proposed model has considerable real-world implications 
for grid operators and energy planners. It provides a reasonable 
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vehicle to deal with solar variability, improving grid operator effi-
ciency. The ability to estimate solar generation variability more 
accurately could help with load balancing, improve battery storage 
usage, and reduce reliance on fossil energy backup. Future work 
will build on the model and include other exogenous factors like 
forecasted weather, satellite data, and sky-camera data. Future 
work will focus on adaptive hybrid models that can learn online 
to better adapt to real-time energy context changes that update in 
real time. Overall, findings highlight the capacity of smart hybrid 
fashions to address the challenges of renewable energy integration 
in cutting-edge strength systems. The ability to deploy the hybrid 
model in real-time, along with strong performance on real-world 
data, illustrates its promise as an operational forecasting tool in 
active smart grid systems. Future applications may include incor-
poration into edge-based energy management systems as well as 
cloud-based prediction pipelines for distributed renewable energy 
systems.
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