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ABSTRACT

An accurate solar energy forecast is important for the efficient operation of smart grids, especially with the increasing penetration of renewable energy sources.
This paper proposes a hybrid forecasting approach that combines long short-term memory (LSTM) neural networks with autoregressive integrated moving
average (ARIMA) models to improve the accuracy of short-term solar energy predictions. While ARIMA effectively captures linear temporary dependence,
LSTM networks are powerful in nonlinear and long-distance pattern modeling. By integrating these two models, the proposed hybrid approach takes advantage
of their complementary strengths to stop and address nonlinearity. The model is trained and tested on real-world solar power data collected from the grid-
connected photovoltaic system. The evaluation metrics, such as mean absolute error, root mean squared error, and mean absolute percentage error, perform
better than stand-alone ARIMA and LSTM models in the hybrid model, outpacing accuracy. Results outline the ability of hybrid intelligent models to increase

the prediction of solar energy, contributing to more stable and reliable smart grid operations.

Index Terms—Autoregressive integrated moving average (ARIMA), hybrid models, long short-term memory, solar power forecasting, smart grids

I. INTRODUCTION

The increasing attention to eco-friendly energy sources has brought
about an exponential increase in the installation of solar photo-
voltaic (PV) systems [1]. Solar energy, being a clean, inexhaustible
source of power, has an intermittent nature of energy generation,
which creates big challenges for power system operators, especially
in smart grid environments where balancing demand and supply
in real time is paramount [2]. There is a need for short-term solar
power forecasting in order to ensure grid stability, better energy
management, and a reduction in conventional backup generation
[3]. However, these models may not be suitable for all types of data,
especially when the data shows nonlinear patterns or seasonal
variations. However, these methods seldom capture the random
fluctuations with complex interactions typical of solar power gener-
ation data. Contrastingly, certain deep learning methods are known
to do well with nonlinear time-dependent patterns; in particular,
these fall into one category of recurrent networks known as the
long short-term memory (LSTM) networks [4,5]. The LSTM also has
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limitations, so researchers have considered enhancement through
hybridization with other techniques, for example, neural attention
or convolutional neural networks, to improve both performance
and interpretability.

The studies propose a hybrid forecasting technique that mixes the
ARIMA and LSTM techniques to make use of the quality of both mod-
eling paradigms: linear and nonlinear. The method starts with ARIMA
modeling to capture linear developments of solar energy statistics,
accompanied by the use of LSTM to address them. To address the
limitations of stand-alone statistical or deep learning approaches,
this study introduces a hybrid ARIMA-LSTM framework that lever-
ages the strengths of both models for accurate and reliable solar
power forecasting in smart grid environments.

There is a fair amount of literature that has considered solar fore-
casting using statistical or machine learning one-off approaches
(including independent hybrid approaches). Still, there is limited

Received: May 13, 2025

Revision requested: June 9, 2025
Last revision received: June 19, 2025
Accepted: July 7, 2025

Publication Date: September 3, 2025


http://orcid.org/0000-0001-5537-2571
http://orcid.org/0000-0002-3599-7272
mailto:dhayavel2005@gmail.com

TEPES Vol 5., Issue. 3, 215-223, 2025
Kanthavel and Dhaya. A hybrid forecasting approach for solar power generation in smart grids using LSTM and ARIMA

consideration of ARIMA and LSTM in a framework of residual learn-
ing devised specifically for ease in real-time smart grid operation.
While previous use of hybrid methods had a less clear separation
of predictable, structured trends with linear and nonlinear com-
ponents, a sequential decomposition approach of ARIMA for the
structured linear trends is proposed, with the data subsequently
passed to an LSTM for residual, nonlinear terms proposed, with
the data. Consequently, this research is not only a step toward real,
more accurate forecasts, but it is also a computationally efficient
method that would enhance the implementation of hybrid methods
to advance real-time operating grid forecasting, which has not been
accomplished with previous hybrid approaches.

A. Research Gap

While hybrid forecasting methods do exist, the majority of
approaches either integrate linear and nonlinear behaviors in a
black-box model or do not scale to smart grid environments. In addi-
tion, rigorous evaluation of the residual learning framework in con-
junction with strict decomposition has not been conducted on real
solar PV data. This research fills these gaps by:

Developing a structured hybrid ARIMA-E-LSTM framework
whereby the LSTM is explicitly trained on the ARIMA residuals
to enhance model interpretability and accuracy.

Evaluating the hybrid ARIMA-LSTM framework and illustrating
significant accuracy gains relative to other non-hybrid models,
such as with mean absolute error (MAE) =1.30 on real-world
smart grid data.

Additional practical value can be provided by going through the
complexity-performance trade-offs associated with hybrid decom-
position, which is important for use in smart grids in real-time.

1. METHODS

Recent research in solar energy forecasting has focused on integrat-
ing various modeling approaches to improve accuracy. Traditional
statistical models such as Holt-Vinti and seasonal ARIMA (SARIMA)
have been used to model seasonal solar power data, especially in
areas with strong daily and seasonal radiation cycles. For example,
Melit and Kalogirou [6] demonstrated the use of time-series mod-
els for solar radiation forecasting in the Mediterranean climate.

Main Points

A hybrid model combining long short-term memory (LSTM)
networks and autoregressive integrated moving average
(ARIMA) is proposed for accurate solar power generation
forecasting in smart grids.

The approach captures both nonlinear temporal patterns
and linear trends for improved predictive performance.

The proposed hybrid method outperforms stand-alone LSTM
and ARIMA models in terms of root mean squared error and
mean absolute error metrics.

The system provides better short-term forecasts, enabling
more reliable smart grid energy management.

The hybrid approach ensures adaptability to dynamic envi-
ronmental conditions and improves forecast robustness.
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Machine learning methods, such as support vector machines (SVMs)
and random forests, have shown promise in improving the accuracy
of solar energy forecasts. Khosravi et al. [7] PV output is detected
with the use of dress learning to address uncertainty in prediction.

These models are particularly effective in identifying complex rela-
tions in historical data, but comprehensive feature engineering and
tuning may be required. In addition, they are often limited by their
inability to model sequential dependence effectively, which is impor-
tant for time-dependent energy systems. For example, Zeng and
Kiao [8] introduced a wavelet transform-based hybrid model, which
combines SVMs with statistical methods to handle noise and non-
stationarity in the solar dataset.

Hybrid models that combine multiple forecasting techniques have
been proposed as a solution to these boundaries. However, these
methods often struggle with sudden changes caused by weather
variability, making them insufficient for reliable short-term pre-
dictions in the dynamic smart grid environment. Ahmed et al. [9]
extended SARIMA approaches by incorporating meteorological vari-
ables, but results showed limited scalability to different geographical
conditions. In this context, the deep belief network (DBNs) [10] and
models promoting the shield [11] have also been investigated for
their strength and generalization capabilities, which are accompa-
nied by an increase in computational complexity. Hybrid models that
combine multiple forecasting techniques have been proposed as a
solution to these boundaries. For example, Zeng and Kiao [8] intro-
duced a wavelet transform-based hybrid model, which combines
SVMs with statistical methods to handle noise and non-stationarity
in the solar dataset. Other researchers have integrated fuzzy logic,
optimization algorithms, and neural networks to increase perfor-
mance [12]. Recently, Das et al. [13] despite these efforts, in this
study, proposed stronger hybrid architecture, inspiring the develop-
ment of the same stronger hybrid architecture, is basically an inter-
val in the integrated model, which efficiently handles both linear and
nonlinear patterns. Recent improvements in renewable electricity
forecasting have more and more followed hybrid and deep mas-
tering processes to cope with limitations in accuracy and statistical
complexity. Khan et al. [14] proved the effectiveness of deep LSTM
networks mixed with data preprocessing strategies for solar strength
prediction, achieving improved accuracy on real international data-
sets. Zhang et al. [15] proposed a hybrid ARIMA-LSTM model particu-
larly for wind speed forecasting, showing that combining statistical
and neural network-based models improves generalization.

Ahmad et al. [16] delivered a CNN-BiLSTM (Convolutional Neural
Networks-Bidirectional Long Short-Term Memory) framework for
PV power forecasting, where convolutional layers had been used to
extract temporal-spatial capabilities before sequential prediction,
resulting in huge overall performance gains. In any other method,
Shao et al. [17] applied a wavelet-transformed input shape mixed
with gated recurrent gadgets (GRUs) for day-in-advance solar fore-
casting, achieving higher adaptability to non-stationary time-series
information. Mahapatra et al. [18] furnished a complete evalua-
tion of hybrid deep neural networks, highlighting their applicabil-
ity in dynamic power demand environments. Additionally, Fang
et al. [19] integrated interest mechanisms with LSTM models and
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meteorological inputs for solar energy prediction, accomplishing
superior interpretability and accuracy over traditional deep learning
techniques. This current research collectively helps use hybridized
deep learning models for more accurate and adaptive power fore-
casting in smart grids.

Over the last few years, advanced hybrid approaches have also
explored new combinations of deep learning, solutions using statis-
tics, and attention-based approaches that benefit solar forecasting.
Sahoo et al. [20] developed an LSTM-CNN hybrid, which was opti-
mized for microgrid optimization in solar energy cost predictions, that
takes advantage of local spatial-temporal characteristics associated
with seasonal influences within the data for short-term forecasting
applications. Wang et al. [21] also proposed a transformer predic-
tion framework that included all available meteorological factors and
showed success in predicting solar activity data with varying degrees
of changes in weather conditions, with high levels of error variance.

Additionally, Chen et al. [22] presented and tested a GRU model
that was enhanced by an attention mechanism that responsively
accounted for the abundance and loss of incoming solar irradi-
ance and demonstrated generalized high performance across many
regions. Ali et al. [23] wanted to contrast black-box neural-based
hybrids as compared to residual decomposition-based models.
When using structured residual learning approaches—similar to the
one explored here—they indicated that the residual components
offered advantages for interpretability and error localization. Kaur
et al. [24] presented the deployment of deep hybrid solar forecasting
models for utility-grade smart grids, with recommendations regard-
ing low latency and modular development. Just the year before,
Hossain et al. [25] introduced the adaptive LSTM with attention and
transfer learning for high-resolution forecasting to degrees of high
complexity and a loss of modularity.

Nevertheless, while these advancements are evident, the vast major-
ity of current models employ either black-box types or over-focus on
accuracy, potentially limiting real-time use applications. This study
proposes the use of structured residual modeling, where ARIMA
provides a deterministic trend model and the LSTM accounts for the
nonlinear distilling of the residuals. This new decomposition better
handles accuracy, interpretability, and computational feasibility for
real-world grid forecasting applications.

For wind speed prediction, Zhang et al. [15] proposed a hybrid
model of both ARIMA and LSTM using raw data with a joint training
approach. A key difference with the method is the explicit use of
residual decomposition, which aids in interpretability and likelihood
of performance (particularly in the non-stationary conditions of solar
power). While the external features used by Zhang et al. were lim-
ited, the proposed model utilized both meteorological variables and
time features, which would demonstrate both better generalization
and real-time adaptability of the model for solar forecasting.

While previous studies have referenced hybrid models, there are
few examples of an architecture that is residual-driven, where
ARIMA is first used to capture deterministic trends as the first model,
and where the LSTM is explicitly trained on the residuals from the
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prediction of the ARIMA model. This type of layering is advantageous
because it provides interpretability as ARIMA and the LSTM are alter-
nating, but also restricts overfitting and obtains robustness through
volatile solar conditions. It is unlike the general black-box hybrids
reported in the literature.

I1l. RESULTS

The proposed hybrid forecasting model combines the complemen-
tary strengths of ARIMA and LSTM neural networks to achieve more
accurate solar power predictions. The ARIMA excels at capturing lin-
ear trends and seasonal patterns in time-series data, while LSTM is
designed to model complex nonlinear relationships and long-term
dependencies. This hybrid approach offers enhanced prediction per-
formance by addressing both linear and nonlinear components of
solar power generation.

A. Data Preprocessing

The forecasting framework begins with the collection and prepro-
cessing of historical solar power generation data, which includes
normalization, handling missing values, and temporal feature engi-
neering (e.g., extracting hour-of-day, day-of-week, and solar eleva-
tion angle). The dataset is then split into training and testing sets in a
time-consistent manner to preserve sequence integrity.

B. Autoregressive Integrated Moving Average Component

In the first stage, an ARIMA model is trained on the normalized solar
power data. The model parameters (p, d, q) are selected based on
the autocorrelation function (ACF), Partial ACF, and Akaike informa-
tion criterion (AIC). The ARIMA model captures the linear component
of the solar power output. The proposed hybrid forecast models are
designed to leverage the complementary strengths of ARIMA and
LSTM neural networks for more accurate solar energy prediction.
The ARIMA is an expert in capturing linear trends and seasonal pat-
terns in time-series data, while LSTM is capable of modeling complex
nonlinear relationships and long-term dependence. The model fol-
lows a two-step architecture, as illustrated in Fig. 1.

C. Residual Extraction

Once the ARIMA forecast arises, the residual chain is calculated by
reducing the ARIMA output from the real values. These remain have
nonlinear components that ARIMA cannot capture.

D. Long Short-Term Memory Modeling

The residues are used to train the LSTM network, which learns the
underlying nonlinear dependence. The LSTM architecture consists of
an input layer and one or more hidden LSTM layers, with a drop-
out regularization to avoid overfitting and a dense output layer.
The model is trained using a sliding window approach with a suit-
able sequence length to catch cosmic dependence. Once the ARIMA
model is applied and its forecast y** is obtained, the residual
series e, is computed as in (1):

SARIMA

et = yt - yt (1)
Here, y, is the actual solar power at time t, and y "™ is the ARIMA
prediction at time t. The LSTM model is trained on the residual
sequence {e,_,, €,_, ., €,_,}, using a sliding window approach, to
predict the nonlinear component of the forecast eP™ (2):
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Fig. 1. Hybrid ARIMA-LSTM model architecture.

&™ = 1STM (e, 1,8 50060 (2)
The final hybrid forecast y, is obtained by combining the ARIMA fore-
cast and the LSTM predicted residual in (3):

- SARIMA | ALSTM
Vi =Vt +é

(3)
This architecture allows the hybrid model to capture both the linear
trend (via ARIMA) and nonlinear variations (via LSTM) in the solar
power time series.

E. Hybrid Forecast Output

The final forecast ARIMA prediction and LSTM-pre-residue are briefly
obtained. This hybrid approach allows the model to reorganize
both linear and nonlinear components present in the original solar
power data.

F. Evaluation Matrix
The model’s performance is evaluated using the standard error
matrix, which means MAE, root mean squared error (RMSE), and
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absolute mean absolute percentage error (MAPE). These matrices
are used to compare hybrid models against Stand-alone ARIMA and
LSTM models, which demonstrate the effectiveness of the hybrid
approach in improving forecast accuracy.

Let:

y;: Actual solar power at the time t

y"A Forecast from the ARIMA model at time t
€=y, — yP*™* Forecast of residual from LSTM
Residual (nonlinear component)

er™ Forecast of residual from LSTM

y, = yii™A 4+ ™ Final forecasted value at time t
Final hybrid forecast

Step 1: ARIMA forecasting

The ARIMA (p, d, g) model predicts the linear component using the
following equation (4):

P q
yr=c+ Zd)i&.v;—f + Zejst—j +&
i1 1

(4)

Where:

y: Differenced time series (after d differencing steps)
¢;: Autoregressive coefficients

U, Moving average coefficients

&, White noise error

c. Constant term

Step 2: Residual calculation

The residual (nonlinear part) is obtained as in (5):

[ ARDIA
t bt

(5)

€ =Y,
Step 3: LSTM-based residual forecasting

The LSTM model learns from previous residuals and forecasts the
nonlinear component in (6):
é:STM = LSTM(etAvet—zw--

7et—n

)

(6)
Where:

e n:Sequence length (look-back window)
LSTM: Trained network that captures temporal dependencies in

residuals

Step 4: Final hybrid forecast

The final forecast is the sum of the ARIMA prediction and LSTM pre-
dicted residual as in (3).

The hybrid ARIMA-LSTM model architecture diagram visually repre-
sents the workflow of combining ARIMA and LSTM models for solar
power forecasting.
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Data collection (step 1): This is the initial step in collecting historical
solar power generation data from a grid-connected PV system.

Data preprocessing (step 2): The collected data is preprocessed to
handle missing values, reduce noise, and normalize the data, ensur-
ing it’s ready for modeling.

ARIMA model (step 3): The ARIMA is applied to capture the linear
trends and seasonality in the solar power generation data. The out-
put from ARIMA represents the linear component of the time series.

LSTM model (step 4): The residuals (nonlinear components) left after
the ARIMA model are passed through an LSTM model. The LSTM net-
works are excellent at capturing nonlinear patterns and long-range
dependencies in time-series data.

Hybridization (step 5): The predictions from the ARIMA model (lin-
ear) and the LSTM model (nonlinear) are combined to produce a
hybrid forecast. This hybrid approach combines the strengths of both
models to improve accuracy and robustness.

Post-processing (step 6): The final forecast is processed to ensure
smoothness and adjustanyirregularities or outliersin the predictions.

Evaluation (step 7): The hybrid ARIMA-LSTM model architecture dia-
gram represents the workflow of the ARIMA and LSTM versions for
visual solar energy forecasting.

IV. DISCUSSION

A. Data Description and Preprocessing

The dataset analyzed in this study was compiled from a grid-con-
nected PV system located at Port Moresby, Papua New Guinea, that
spanned January 1, 2020—-December 31, 2022. The data granularity
was at an hourly resolution. The dataset contained solar power out-
put (kW), global horizontal irradiance (W/m?), ambient temperature
(°C), relative humidity (%), wind speed (m/s) and cloud cover (frac-
tional), solar elevation and azimuth angles. The data set underwent
a cleaning and preprocessing enrichment process prior to applying
the forecasting models. The method employed to interpolate the
missing data points was univariate linear interpolation. All numerical
features were normalized using min-max scaling. Furthermore, new
temporal features, including an hour of the day, day of the week, and
indicators of seasonal starting times, were engineered to help the
time-series models capture underlying learning patterns. The data
set was then split into 80% and 20% in a time sequence for the train-
ing and test set, respectively.

B. Model Performance Evaluation

The performance of the hybrid ARIMA-LSTM model was compared
against two stand-alone models: ARIMA and LSTM. The models were
evaluated using three common metrics shown in (7):

n

1
MAE:;Z

i=1

-

Yi (7)

Where, y, is the Actual value, y; is the predicted value, and n is the
number of data points (8, 9).
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(8)

)

The results of the evaluation are presented in Table | below:

As shown in Table I, the hybrid ARIMA-LSTM model significantly out-
performs both the ARIMA and LSTM models in terms of all evalua-
tion metrics. Specifically:

Fig. 2 explains the performance of the three models, ARIMA, LSTM,
and hybrid ARIMA-LSTM turned, to evaluate the usage of three
key metrics: MAE, RMSE, and MAPE. The hybrid ARIMA-LSTM ver-
sion demonstrated superior overall performance across all metrics
compared to the stand-alone ARIMA and LSTM models. Specifically,
the MAE for the hybrid ARIMA-LSTM model was 1.30, lower than
each LSTM (1.80) and ARIMA (2.15), indicating that the hybrid model
makes the most correct predictions. Similarly, the RMSE for the
hybrid model became 2.20, which changed into additionally the low-
est, outperforming LSTM (2.95) and ARIMA (3.45). Finally, in terms
of MAPE, the hybrid ARIMA-LSTM version again had a nice perfor-
mance, achieving a price of 3. Around 80%, which is substantially
lower than LSTM (4.60%) and ARIMA (5.20%). These effects highlight
the effectiveness of mixing ARIMA’s potential to capture linear ten-
dencies and LSTM'’s power in modeling nonlinear residuals, leading
to more accurate and dependable forecasts for solar strength tech-
nology. The assessment demonstrates that the hybrid ARIMA-LSTM
model presents more specific predictions, making it a promising tool
for strength forecasting in smart grids.

C. Visual Comparison: Actual vs. Predicted Values

To further evaluate the models, the actual solar power genera-
tion values and the corresponding predicted values from the three
models (ARIMA, LSTM, and hybrid ARIMA-LSTM) are compared
graphically.

The ARIMA predicted vs. actual solar power generation in Fig. 3
compares the actual solar power generation with the expected val-
ues from the ARIMA version over a specific period. In this case, the
real solar strength technology (represented via the solid black line)

TABLE I.
MODEL EVALUATION VALUES

Model MAE RMSE MAPE
ARIMA 2.15 3.45 5.20%
LSTM 1.80 2.95 4.60%
Hybrid ARIMA-LSTM 1.30 2.20 3.80%

ARIMA, autoregressive integrated moving average; LSTM, long short-term mem-
ory; MAE, mean absolute error; MAPE, mean absolute percentage error; RMSE,
root mean squared error.
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Performance Evaluation of ARIMA, LSTM, and Hybrid ARIMA-LSTM Models
5.20

Values

Hybrid ARIMA-LSTM

Models

Fig. 2. Performance evaluation of ARIMA,
ARIMA-LSTM.

LSTM, and hybrid

fluctuates based on elements such as time of day and climate condi-
tions, as expected in solar power production. The ARIMA model’s
predictions (represented with the aid of the dashed blue line) are
plotted alongside the real values to show how well the model fore-
casts the solar power era. As visible in the figure, the ARIMA ver-
sion is capable of capturing the general trend and cyclical nature
of the statistics but has some difficulty in accurately predicting the
smaller fluctuations, in particular at some points of rapid adjust-
ments in solar strength technology. For instance, at some point in
positive hours in which there are abrupt adjustments, the antici-
pated values from the ARIMA model diverge slightly from the facts.
This conduct displays the ARIMA model’s power in shooting linear
tendencies; however, it has barriers in forecasting nonlinear patterns
and sharp fluctuations that are typical in solar electricity generation.
While ARIMA gives an affordable approximation of solar strength era
developments, its predictions won’t continually replicate sudden or
irregular adjustments, such as the ones due to climate conditions.
This illustrates the potential advantage of mixing ARIMA with differ-
ent strategies, which include LSTM, to improve prediction accuracy
for time-collection information like solar energy technology.

The LSTM predicted vs. actual solar power generation visualized
in Fig. 4 shows how well the LSTM model predicts solar electricity

ARIMA Predicted vs. Actual Solar Power Generation

250 { —@— Actual Solar Power

-~ ARIMA Predicted Solar Power

240
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Fig. 3. ARIMA predicted vs. actual solar power generation.
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LSTM Predicted vs. Actual Solar Power Generation
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Fig. 4. LSTM predicted vs. actual solar power generation.

generation through the years. The real solar electricity generation
(represented by the solid black line) varies due to elements like day-
light depth, time of day, and environmental conditions. The LSTM
version’s predictions (represented through the dashed red line) are
plotted along the actual values to examine the accuracy of the pre-
dictions. From the graph, it is evident that the LSTM version is more
able to capture the nonlinear patterns in the solar power technol-
ogy records than simpler methods like ARIMA. The LSTM, a sort of
recurrent neural network, excels at studying past time-series data
and identifying complex temporal dependencies. This lets it make
extra correct predictions, especially throughout hours in which the
facts exhibit large modifications or fluctuations. For example, the
LSTM version is capable of complying with the developing and fall-
ing developments in solar power generation with more precision,
even at some stage in greater rapid shifts within the records. While
there are nevertheless some minor discrepancies between the real
and predicted values, LSTM plays nicely at taking pictures of each of
the smooth traits and the abrupt variations, which is regularly tough
for traditional statistical models like ARIMA. This figure highlights
that LSTM is a sturdy candidate for forecasting solar energy genera-
tion, mainly when the records involve complicated, nonlinear styles.
However, like all predictive models, LSTM may additionally struggle
with severe anomalies or outliers in the statistics, and hybrid tech-
niques ought to similarly enhance overall performance.

The hybrid ARIMA-LSTM predicted vs. actual solar power genera-
tion, in Fig. 5, compares the real solar energy era with the predic-
tions made by way of the hybrid ARIMA-LSTM model over a targeted
period. The real solar power era (represented by the strong black
line) fluctuates in keeping with various factors, including time of
day, solar light intensity, and climate conditions. The hybrid ARIMA-
LSTM predictions (represented by means of the dashed green line)
are shown alongside the actual values, reflecting how the version
forecasts the power technology. In this situation, the hybrid ARIMA-
LSTM model combines the strengths of both the ARIMA model and
the LSTM version to seize each of the linear developments and the
nonlinear fluctuations in the solar electricity era data. The ARIMA
version is responsible for capturing the overall fashion and seasonal-
ity, even as the LSTM factor makes a specialty in forecasting the resid-
uals or the nonlinear components that ARIMA might not be able to
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Hybrid ARIMA-LSTM Predicted vs. Actual Solar Power Generation
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Fig. 5. Hybrid ARIMA-LSTM predicted vs. actual solar

generation.

power

predict. The figure suggests that the hybrid ARIMA-LSTM model is a
mile closer to the actual values than character models like ARIMA or
LSTM alone. This is obvious in the way the expected values (inexperi-
enced dashed line) closely match the actual solar energy generation
(black solid line), taking pictures of each of the clean trends and the
abrupt modifications in solar output. The hybrid technique results in
higher prediction accuracy and robustness, mainly throughout dura-
tions, where solar energy generation suggests speedy fluctuations or
nonlinear behavior. This graph successfully illustrates how the hybrid
ARIMA-LSTM model balances the strengths of linear and nonlinear
forecasting models to provide extra accurate and reliable predic-
tions, making it a great tool for time-series forecasting in dynamic
environments, along with smart grids.

Fig. 6 visualizes the assessment of actual solar power generation and
the predictions made by means of three different fashions: ARIMA,
LSTM, and the hybrid ARIMA-LSTM. Actual Solar Power (black line
with circles) represents the real solar power technology values dis-
covered over time. This fluctuates primarily based on diverse exter-
nal factors, including time of day, climate conditions, and solar light
intensity. ARIMA Predicted Solar Power (blue dashed line with “x”
markers) shows the forecasted values generated with the aid of
the ARIMA model, which, in the main, captures linear trends and

Comparison of Actual and Predicted Solar Power Generation
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Fig. 6. Hybrid ARIMA-LSTM Predicted vs. Actual Solar Power
Generation, ARIMA and LSTM.
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seasonality. While ARIMA performs reasonably well at predicting the
overall fashion, it could fail to capture abrupt, nonlinear fluctuations.
LSTM Predicted Solar Power (pink dashed line with “x” markers) rep-
resents the values anticipated by means of the LSTM version. LSTM
excels at modeling nonlinear trends and can expect more compli-
cated patterns, specifically when solar power generation modifica-
tions rapidly due to climate conditions or other abnormal factors.
Hybrid ARIMA-LSTM Predicted Solar Power (inexperienced dashed
line with “x” markers) combines the strengths of ARIMA and LSTM,
resulting in a more accurate prediction. The hybrid model captures
each linear trend (from ARIMA) and nonlinear fluctuations (from
LSTM), providing the most accurate forecast of the three. As is glaring
from the graph, the hybrid ARIMA-LSTM model (green) closely tracks
the actual solar strength era (black), outperforming both ARIMA
(blue) and LSTM (crimson). The hybrid technique is capable of effi-
ciently predicting each of the smooth tendencies and abrupt fluctua-
tions in solar strength, demonstrating its suitability for time-series
forecasting in smart grids. This figure, in reality, illustrates the predic-
tive skills of each version and the way combining ARIMA and LSTM
can enhance the accuracy of forecasting in the solar electricity era.

D. Impact of Hybridization

The hybridization of the ARIMA and LSTM models leverages the
strengths of each procedure, resulting in the hybrid ARIMA-LSTM
model that correctly addresses each linear and nonlinear style in
time-series data. ARIMA, as a statistical model, is talented at cap-
turing the linear fashion and seasonality within the records, making
it nicely suitable for forecasting predictable patterns, which include
daily cycles in the solar energy era. On the other hand, the LSTM
model, a type of recurrent neural network, is designed to handle
nonlinear components by forecasting the residuals that are left after
ARIMA’s predictions, making LSTM particularly effective at captur-
ing dynamic fluctuations in solar power generation caused by irregu-
lar events, such as weather changes. By combining the strengths of
these two fashions, the hybrid ARIMA-LSTM version substantially
reduces forecasting mistakes, especially during durations of high
fluctuations in solar energy output. This is important for dynamic
systems like smart grids, where solar power technology is a prob-
lem for each predictable style (e.g., the daylight cycle each day) and
unpredictable variations (e.g., surprising weather modifications,
cloud cover). Thus, the hybrid ARIMA-LSTM model offers a better
and correct solution for forecasting solar energy generation, mak-
ing it exceptionally treasured for programs in smart grids, where the
capability to forecast both solid and risky components is vital for
green energy control and grid balance.

E. Computational Complexity

The computational complexity of the fashions was evaluated to
assess the trade-off between accuracy and computational cost. The
hybrid ARIMA-LSTM version, while more computationally intensive
than the character fashions, gives a favorable balance among those
factors. The ARIMA, being a simple statistical version, is rapid to
compute but struggles with accuracy, mainly when the data reveals
complicated styles or nonlinearities. On the other hand, LSTM,
though requiring significantly more computation because of its deep
learning architecture, is adept at capturing the nonlinear depen-
dencies in time-collection data. The hybrid ARIMA-LSTM version
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combines the strengths of each method, ensuring that it captures
each linear development (from ARIMA) and nonlinear fluctuations
(from LSTM). While the hybrid version calls for more computational
assets, the trade-off between accuracy and computational cost is
minimal, supplying a strong solution for time-series forecasting in
dynamic systems like clever grids. The total training time for the
hybrid ARIMA-LSTM model, which, even though higher than in the
assessment of individual models, stays appropriate for actual-time
forecasting applications, while the model is optimized for deploy-
ment. With suitable optimization and hardware, the hybrid model
can obtain green overall performance in real international scenarios,
in which short and correct predictions are essential for operational
decision-making in electricity systems.

F. Practical Implications

The hybrid ARIMA-LSTM framework can noticeably improve the
accuracy of solar power era forecasts in smart grids, which is impor-
tant for efficient power control. In dynamic and allotted energy
systems, in which renewable assets like solar power are variable,
accurate forecasting becomes important to maintain grid stability
and optimize electricity utilization. The model’s capability to forecast
both linear tendencies (through ARIMA) and nonlinear fluctuations
(through LSTM) allows for extra unique predictions, especially for the
duration of intervals of excessive variability in solar electricity out-
put. By providing extra reliable forecasts, the hybrid ARIMA-LSTM
model can help in balancing grid hundreds, ensuring that supply
and demand for electricity are better aligned, which is, in particular,
essential in clever grids, in which integration of renewable energy
sources, together with solar, is essential for reducing reliance on fos-
sil fuels and accomplishing sustainable power desires.

Furthermore, accurate forecasting facilitates optimizing the storage
of excess strength generated during top solar hours, consequently
minimizing energy wastage. The version can be deployed in real-time
applications for solar electricity generation forecasting, allowing
progressive decision-making and facilitating the optimization of grid
operations. By offering accurate and well-timed forecasts, the hybrid
ARIMA-LSTM model can help grid operators count on adjustments in
the solar strength era, modify power generation systems, and ensure
regular power delivery, even though the solar strength technology is
fluctuating. The time efficiency of the version, particularly while opti-
mized for real-time execution, makes it a viable solution for opera-
tional use in smart grids, contributing to the dependable integration
of renewable power sources and ensuring grid balance. Due to its
excellent accuracy, low-latency architecture, and ability to take into
account actual solar fluctuations, this proposed hybrid model is a
viable candidate for deployment on a smart grid forecasting system
as a product in edge or cloud computing configuration.

G. Execution Environment
The hybrid forecasting model was implemented in Python 3.10 with
the following main libraries:

Stat models for ARIMA modeling

TensorFlow 2.12 and Keras for the LSTM implementation
NumPy, Pandas, and Matplotlib for data management and
plotting
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All experiments were run on a machine with the following
specifications:

CPU: Intel Core i7-11800H @ 2.30GHz RAM: 32 GB
GPU: NVIDIA GeForce RTX 3060 (6GB)
Operating System: Windows 11 Pro 64-bit

The average length of time taken by the LSTM to train was on the
order of 22 seconds/epoch, with 50 epochs needed for convergence
on a dataset. The ARIMA model training and parameter tuning (p, d,
g using AIC) also took less than 2 minutes.

For each instance (i.e., new hourly input), the complete forecasting
time was less than 0.2 seconds. This suggests that the model can
work for near real-time inference when deployed on equivalent
hardware, or is optimized to run on an edge computing environ-
ment. In the future, the exploration will include integrating small-
scale meteorological parameters such as the solar zenith angle,
dew point, UV index, and cloud ceiling height from satellites or field
sensors. Additionally, adaptive learning for the hybrid model will be
investigated to enable auto-tuning based on data drift and real-time
load patterns. Uncertainty quantification and explainable Al tech-
niques will also be explored to help improve trust in and deployment
of smart grid platforms.

V. CONCLUSION

This dissertation presented a highly innovative hybrid forecasting
methodology that incorporated ARIMA and LSTM neural networks
for short-term solar power forecasting in a smart grid application.
The motivation was based on the theory that both statistical and
deep learning methods are likely to provide inaccurate forecasts
if they can only model either linear or nonlinear dynamics. As a
way of overcoming this possible limitation, it was proposed that
a two-stage architecture could be created whereby the linear
components could be modeled with the ARIMA method and the
nonlinear aspects modeled with LSTM. This residual-based hybrid-
ization was proposed as a practical way of taking the best of both
worlds from statistical and deep learning models. The hybrid model
was evaluated on real-world solar power data, and the forecasting
accuracy of the hybrid was compared to stand-alone ARIMA and
LSTM using evaluation metrics of forecasting accuracy, e.g., MAE,
RMSE, and MAPE. In all evaluations, the results substantiated the
promise of accurately and robustly forecasting solar power genera-
tion due to the hybrid models’ forecast performance compared to
the ARIMA and LSTM models, with accuracy improvements of 40%
lower in MAE, compared to the ARIMA model, and 28% lower in
MAPE, compared to the LSTM model. Visual comparisons further
substantiated that the hybrid model’s forecasts were consistently
very close to the actual solar power generation, especially with
dynamic generation periods, which exhibited rapid movement on
the forecast timeframe. In addition to accuracy, the hybrid mod-
el’s computational complexity and practicality were discussed. It
requires more resources than potential alternate models, but the
benefits of its superior performance and the ability to be practically
deployed in real time in smart grid contexts easily justify this trade-
off. The proposed model has considerable real-world implications
for grid operators and energy planners. It provides a reasonable
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vehicle to deal with solar variability, improving grid operator effi-
ciency. The ability to estimate solar generation variability more
accurately could help with load balancing, improve battery storage
usage, and reduce reliance on fossil energy backup. Future work
will build on the model and include other exogenous factors like
forecasted weather, satellite data, and sky-camera data. Future
work will focus on adaptive hybrid models that can learn online
to better adapt to real-time energy context changes that update in
real time. Overall, findings highlight the capacity of smart hybrid
fashions to address the challenges of renewable energy integration
in cutting-edge strength systems. The ability to deploy the hybrid
model in real-time, along with strong performance on real-world
data, illustrates its promise as an operational forecasting tool in
active smart grid systems. Future applications may include incor-
poration into edge-based energy management systems as well as
cloud-based prediction pipelines for distributed renewable energy
systems.
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