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ABSTRACT

As solar energy adoption continues to rise, the demand for reliable photovoltaic (PV) systems has increased significantly. Ensuring the efficient and secure opera-
tion of PV systems requires accurate fault detection, making fault diagnosis a critical research area. This study investigates the diagnosis of short-circuit faults in 
PV systems by integrating machine learning algorithms with data balancing techniques. Four classifiers (Random Forest, CatBoost, Extreme Gradient Boosting, 
and Light Gradient Boosting Machine (LGBM)) were employed for fault classification, while Synthetic Minority Oversampling Technique (SMOTE), Random 
Oversampling, and Adaptive Synthetic Sampling were used to address class imbalance. Two datasets were analyzed: Dataset-1 with 11 features and Dataset-2 
with 13 features. For Dataset-1, LGBM achieved the highest accuracy (79.28%) on the imbalanced data, which improved to 86.59% after applying SMOTE. By 
incorporating two additional features in Dataset-2, fault diagnosis accuracy increased to 98.57% on the imbalanced data and reached 100% when balanced with 
SMOTE. These findings demonstrate that combining LGBM with SMOTE significantly enhances short-circuit fault detection performance in PV systems.

Index Terms—Fault diagnosis, machine learning, short circuit fault, solar photovoltaic system

I. INTRODUCTION
Rapid industrial development, population growth, and the result-
ing rise in energy consumption have significantly increased global 
energy demand. This growing demand has intensified interest in 
renewable energy sources such as wind, tidal, geothermal, hydro-
electric, biomass, and solar power. Renewable sources are widely 
adopted due to their environmentally friendly and reliable nature, 
and unlike fossil fuels, they do not contribute to greenhouse gas 
emissions. Among these sources, solar energy is harnessed through 
photovoltaic (PV) panels and converted into electricity for end users. 
The rapid advancements in solar technologies, supportive govern-
ment policies, and the declining cost of panel installation have fur-
ther accelerated the adoption of solar energy [1, 2].

According to the IRENA Renewable Energy Statistics 2025 report, 
global solar PV capacity continues to grow steadily, increasing from 
approximately 1407 GW in 2023 to around 1859 GW in 2024 [3]. The 
global change in PV capacity over the past nine years is illustrated 
in Fig. 1. Investments in solar PV also expanded significantly, rising 
from 35 billion USD in 2022 to 83 billion USD in 2023 [4]. As of June 

2025, Turkey’s total installed electricity generation capacity reached 
119 632 MW, of which 19.2% is supplied by solar energy [5].

Photovoltaic systems are composed of multiple components, each 
of which can fail due to physical, environmental, or electrical fac-
tors [6–8]. Fast and accurate fault diagnosis is essential to prevent 
efficiency losses, ensuring that power generation and system safety 
remain unaffected. With the rapid growth of solar investments, the 
number of studies on PV fault detection has significantly increased 
and diversified [6, 7].

A review of the literature reveals that artificial intelligence (AI)-based 
techniques are frequently employed for fault detection and classi-
fication, utilizing historical data in combination with expert knowl-
edge. To enhance the diagnostic performance of these methods, 
researchers often apply data preprocessing, augmentation, reduc-
tion, and feature engineering techniques.

For instance, Lazzeretti et  al. [9] developed a monitoring system 
to collect real-time and historical data and proposed a recursive 
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method for fault detection. They employed an artificial neural net-
work (ANN) to detect and classify short-circuit, open-circuit, distor-
tion, and shading faults using PV panel temperature and irradiance 
values. Similarly, Quiles-Cucarella et al. [10] applied ensemble algo-
rithms, ANNs, and machine learning methods to detect and classify 
seven different PV fault types, achieving the highest accuracy with 
the Bagged Trees algorithm. El-Katheri et al. [11] combined I–V and 
P–V curve analysis with ANNs to identify DC-side faults in PV sys-
tems, testing three scenarios with different input datasets.

Dhimish et  al. [12] explored different ANN structures and fuzzy 
logic models to detect faults such as partial shading, defective PV 
arrays, faulty modules, and Maximum Power Point Tracking errors, 
aiming to mitigate their negative impact on system performance. 
Yang et  al. [13] used the Random Forest (RF) algorithm to classify 
four distinct fault types. Since their dataset was imbalanced, they 
employed Modified Independent Component Analysis for oversam-
pling and undersampling, achieving superior performance compared 
to other classifiers. Yi et  al. [14] proposed a two-stage Support 
Vector Machine model to classify line-to-line faults based on current 
and voltage data, demonstrating reliable detection even under low-
irradiance and high-impedance fault conditions.

The aim of this study is to investigate the effects of different data 
balancing methods used to eliminate the imbalance in datasets for 

the accurate classification of short circuit faults occurring in solar 
PV systems on the performance of classification algorithms. Faults 
occurring in solar PV systems were classified into four different 
cases. For this purpose, a dataset consisting of 700 data points from 
the literature was used [15]. The data numbers of fault cases in the 
dataset are imbalanced. Since this imbalance in the dataset is known 
to affect the performance of classification algorithms, different data 
balancing methods were used. Random Oversampling Minority 
Class (ROM) and Synthetic Minority Oversampling Technique 
(SMOTE) methods, which aim to equalize class labels by augment-
ing the data in the minority class according to their own rules, were 
used. In addition, Adaptive Synthetic Sampling (ADASYN) method 
was used, which aims to augment the data in the difficult-to-learn 
datasets without equalizing the class labels. Datasets created with 
these methods were used with classification algorithms such as 
RF, Extreme Gradient Boosting (XGBoost), Light Gradient Boosting 
Machine (LGBM), and CatBoost algorithm (CA) to obtain compara-
tive fault diagnosis accuracies and performance metrics.

This study is organized as follows. The second section summarizes 
the short-circuit faults that occur in solar PV systems and are clas-
sified in this study. The machine learning methods used for classi-
fication, including RF, XGBoost, LGBM, and CA, as well as the data 
balancing methods ROM, SMOTE, and ADASYN, are briefly described 
in the third section, Materials and Methods. The fourth section pre-
sents the analyses and their results, and the fifth section presents 
the study’s conclusions.

Solar Photovoltaic Faults
Environmental, physical, and electrical failures may occur in solar 
PV systems. Early diagnosis of these failures is crucial to ensure 
efficiency, safety, and cost-effectiveness. Accurate fault detection 
enables timely intervention, thereby minimizing failures and reduc-
ing their negative impact on system performance [6–8].

Environmental faults occurring in PV systems are defined as partial 
shading, hotspot faults, and bypass diode faults [6, 16, 17]. Physical 
faults include microcracks and fractures that occur during produc-
tion, transportation, and assembly, and internal corrosion caused 
by external factors such as humidity [7, 8]. Electrical faults include 
faults occurring in the inverter or PV array components in PV sys-
tems [18, 19]. In this study, a classification process was performed to 
determine the fault type using data from String Fault, String to String 
Fault, and String to Ground Fault situations occurring in PV systems.

A string fault is a fault that occurs in a structure consisting of series-
connected PV modules. This fault occurs due to the failure of any 
module within the string, or breaks or damage to electrical connec-
tions. If not detected and repaired, the string cannot produce elec-
tricity, reducing system efficiency.

A string-to-string fault is a short-circuit fault that occurs between 
two different strings. It occurs due to incorrect connections during 
the installation phase or insulation defects in the connecting cables. 
It causes current flow within the circuit, creating the risk of overheat-
ing and fire.

Main Points

•	 It has been shown that imbalance in the dataset negatively 
affects classification performance, but data balancing meth-
ods such as Synthetic Minority Oversampling Technique, 
Random Oversampling, and Adaptive Synthetic Sampling 
reduce this effect and improve accuracy rates.

•	 The performances of Random Forest, Extreme Gradient 
Boosting, Light Gradient Boosting Machine, and CatBoost 
algorithms were compared and significant performance 
improvements were obtained by applying data balancing 
methods.

•	 High accuracy rates were achieved in classifying four differ-
ent fault conditions demonstrating that the methods are 
applicable in fault detection in photovoltaic systems

Fig. 1. Change in solar PV capacity in the world over the years [3].
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A string-to-ground fault occurs between a string and the ground. It 
occurs when insulation breaks down and ground contact occurs. A 
leakage current from the system to ground occurs, posing a risk of 
shock to personnel if undetected.

II. METHODS
A. Classification Algorithms

1) Random Forest:
It is one of the ensemble learning algorithms proposed by L. 
Breiman in 2001 [20]. It is a method that aims to reach a conclusion 
by combining the classification results obtained with different num-
bers of decision tree structures. It combines the results obtained 
with the decision trees with the voting method and determines 
the result that reaches the maximum number of votes as the final 
result [21].

2) Extreme Gradient Boosting:
It is an improved version of the Gradient Boosting algorithm. It 
applies decision trees sequentially, and the next decision tree aims 
to learn from the errors of the previous algorithm and perform 
classification. Its advantages are fast, flexible, and low overfitting 
[22, 23].

3) Light Gradient Boosting Machine:
It is an effective and open-source Gradient Boosting algorithm intro-
duced by Microsoft in 2017. It is a scalable algorithm that can make 
fast decisions using decision trees. Its advantages include fast opera-
tion, high accuracy, and low memory usage [24].

4) CatBoost Algorithm:
 Derived from the words “Categorical” and “Boosting,” the Gradient 
Boosting algorithm is a widely used algorithm in R and Python devel-
oped by Yandex. It allows for accurate processing of class labels 
and variables across multiple decision trees with fewer parameters, 
resulting in highly accurate results. Its operations solve the overfit-
ting problem and produce fast results [25, 26].

B. Data Balancing Methods

1) Random Oversampling Minority Class:
The main goal of this method is to label the classes by randomly 
increasing the number of data belonging to the minority class. Its 
advantages are that it is fast and easy to implement and does not 
cause data loss. However, it is a disadvantage that the same data 
must be repeated to equalize the class labels. This can lead to overfit-
ting problems in classification algorithms [27, 28].

2) Synthetic Minority Over-sampling Technique:
It is one of the most commonly preferred oversampling methods. It 
generates synthetic new samples among the samples in the minor-
ity class according to the nearest neighbor rule. This process is 
repeated until the number of minority class data equals the number 
of majority class data. The generated samples differ from the exist-
ing samples. Therefore, it does not cause an overfitting problem. By 
generating different data, it provides data diversity, which increases 
model performance. However, its disadvantages include the possibil-
ity of outliers and the computational cost [29, 30].

3) Adaptive Synthetic Sampling:
In this method, a weighted distribution is used based on the learning 
difficulty of the dataset when augmenting the data for the minority 
classes, and synthetic data is generated from these difficult exam-
ples. Data that are very close to the majority class in the dataset, 
creating classification difficulties, are augmented. This allows the 
classification model to learn better at the boundary values between 
classes. In this method, the minority class data is augmented as 
needed, without expecting it to equal the majority class. By focus-
ing on difficult examples, it increases model learning and produces 
diverse data, thus reducing the risk of overfitting. Its disadvantages 
include computational cost and, in some cases, the generation of 
complex data [31, 32].

C. Performance Metrics
Classification metrics are used in classification processes to evaluate 
classification success and present model performance. True Positive 
(TP) represents the number of correctly detected faults, while True 
Negative (TN) represents the number of non-faulty cases. False 
Positive (FP) represents the detection of non-faulty cases as faults, 
while False Negative (FN) represents undetected faults. The Recall 
parameter is a measure of the ability of the classification algorithm 
used to detect true faults, presented in (1). Precision is the propor-
tion of true positives among detected faults, presented in (2). The F1 
Score is the harmonic average of the Precision and Recal values ​​[33].

		     
Recall �

�
TP

TP FN � (1)

		     
Precision �

�
TP

TP FP .� (2)

IV. RESULTS
In this study, machine learning classification algorithms were 
employed to diagnose faults in solar PV systems. To address class 
imbalance in the dataset and enhance algorithm performance, data 
augmentation techniques including SMOTE, Random Oversampling 
(ROS), and ADASYN were applied. Fault diagnosis performance was 
assessed using both the original (imbalanced) and balanced datas-
ets, allowing for an evaluation of the impact of data balancing on 
classification accuracy. The flowchart of the study is illustrated in 
Fig. 2.

Fig. 2. Flow chart of study.
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A. Dataset
The dataset used in this study consists of 700 data points and classi-
fies the solar PV system into four different states: Fault-free, String 
fault, String to ground fault, and String to string fault [15]. 11 features 
obtained directly from the PV system in the original data set are used 
and detailed information for the data set is presented in Table I. As 
can be seen from Table II, the dataset is unbalanced because the 
number of data points for fault types is unequal.

In the dataset, the current values I1, I2, I3, and I4 represent measure-
ments taken in the same direction from ammeters located at the 
beginning and end of each string. To enhance the dataset, the cur-
rent differences between the beginning and end of the strings were 
also calculated and included, resulting in an extended dataset with 
13 features.

B. Performance Analysis and Results
In this study, a dataset containing 11 features was initially used. 
Because this dataset had an imbalanced data class distribution, it 
was balanced using various data augmentation methods and used for 
fault classification. The data was augmented using the data augmen-
tation methods ROS, SMOTE, and ADASYN to reach the appropriate 
number. Because the ROS and SMOTE methods aimed to have equal 
class labels, each class label was augmented to 223. In the ADASYN 
method, augmentations were made as necessary to account for data 
that created learning difficulties inherent in the method’s application 

principles, resulting in a total dataset of 870 data points. Table II 
shows the results of the balancing process for Dataset-1.

After balancing the dataset using data augmentation methods, the 
training and testing of the classification algorithms were completed, 
and the results were obtained. The classification results of the algo-
rithms for fault diagnosis are presented in Table III. In fault diagnosis 
performed with an imbalanced dataset, the highest fault diagnosis 
performance was achieved by the LGBM algorithm with 79.28%. On 
the dataset balanced with the SMOTE method, the LGBM algorithm 
also achieved the highest performance with 86.59%. On the dataset 
processed with the ROS method, the best performance belonged 
to the XgBoost and RF algorithms with 82.68%. On the dataset aug-
mented with ADASYN, the highest performance was achieved by the TABLE I. 

DATASET CONTENT [15]

Dataset Content

I1 String 1 top average current

I2 String 1 bottom average current

I3 String 2 top average current

I4 String 2 bottom average current

I5 String 3 top average current

I6 String 3 bottom average current

Itotal Total average current

Vdc Total average DC Voltage

Pdc Total average DC Power

T Temperature

IR Radiation

Fault Type Count

0 Fault free 123

1 String fault 174

2 String to ground fault 178

3 String to string fault 223

TABLE II. 
DATA BALANCING RESULTS FOR DATASET-1

Fault Type

Count

ROS/SMOTE ADASYN

0 223 225

1 223 223

2 223 211

3 223 211

Total 892 870

TABLE III. 
FAULT DIAGNOSIS ACCURACY RESULTS FOR DATASET-1

​
Imbalanced 

Dataset SMOTE ROS ADASYN

LGBM 79.28 86.59 78.77 78.73

XGB 73.57 81.56 82.68 81.60

RF 75.71 77.65 82.68 75.86

CA 75.00 78.77 81.00 79.31

79.28

86.59
82.68 81.6

65
70
75
80
85
90

Imbalanced 
Dataset

SMOTE ROS ADASYN

LightGBM XgBoost Random Forest Cat Boost

Fig. 3. Fault diagnosis accuracy for Dataset-1.
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XgBoost algorithm with 81.6%. The results are presented compara-
tively in Fig. 3.

In the fault diagnosis operations performed for Dataset-1, the LGBM 
algorithm showed the best performance in diagnosis with an unbal-
anced dataset. The highest performance in the balancing operation 
performed with data balancing methods was achieved with the LGBM 
algorithm in the SMOTE method. Performance metrics are presented 
in Table IV. In unbalanced dataset conditions, the results show that 
it diagnosed the string fault, labeled 1, with the highest accuracy, 
while it diagnosed the Fault Free condition with the lowest accuracy. 
The results show that increasing the data with the SMOTE method 
increases the algorithm’s fault diagnosis accuracy. Performance met-
rics demonstrate that the Fault Free condition, which performed 
least well in fault diagnosis with an imbalanced dataset, was better 
diagnosed by increasing the data count from 25 to 45. It has been 
shown that increasing and equalizing the data belonging to classes 

in the dataset with the SMOTE algorithm also improves performance 
for all classes.

In the solar PV system, the difference between the current values ​​
measured at the beginning and end of the strings in strings 1 and 
2 was also added to the dataset as a feature. Thus, the number of 
features in the dataset was increased to 13, creating Dataset-2, and 
fault diagnosis was performed using algorithms. Because Dataset-2 
was an imbalanced dataset, the dataset content was first increased 
using data balancing methods. In the augmentation process per-
formed with the ROS and SMOTE methods, the aim was to ensure 
equal data for each fault type, so 223 data points were augmented 
for each fault. However, because the augmentation process was 
performed in the ADASYN method according to the learning dif-
ficulty between the feature and fault class, a total of 876 data 
points were obtained. The number of data points obtained for each 
fault as a result of the data augmentation methods is presented in 
Table V.

TABLE IV. 
PERFORMANCE METRICS FOR RAW DATASET-1 AND SMOTE METHOD IN LGBM ALGORITHM

Imbalanced Dataset

LightGBM

 Precision Recall F1-Score Support

 0 0.68 0.60 0.64 25

1 0.92 0.94 0.93 36

2 0.83 0.83 0.83 35

3 0.72 0.75 0.73 44

Accuracy   0.79 140

SMOTE LightGBM

 Precision Recall F1-Score Support

0 0.87 0.89 0.88 45

1 0.95 0.91 0.93 44

2 0.79 0.82 0.80 45

3 0.80 0.80 0.80 45

Accuracy   0.86 179

TABLE V. 
DATA BALANCING RESULTS FOR DATASET-2

Fault Type

Count

ROS/ SMOTE ADASYN

0 223 223

1 223 222

2 223 221

3 223 210

Total 892 876

TABLE VI. 
FAULT DIAGNOSIS ACCURACY RESULTS FOR DATASET-2

​
Imbalanced 

Dataset SMOTE ROS ADASYN

LGBM 98.57 100 98.32 98.86

XGB 97.14 97.76 96.08 95.45

RF 97.14 97.2 98.32 98.29

CA 95.71 98.32 98.32 97.72
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Fault diagnosis was performed using Dataset-2, which contained 13 
features. When the fault diagnosis accuracies of the classification 
algorithms were first obtained using an imbalanced dataset, it was 
observed that the addition of two features to the dataset had signifi-
cant effects on classification performance. The classification results 
of the algorithms for fault diagnosis are presented in Table VI. The 
highest performance achieved by the LGBM algorithm was 78.29%, 
while with these features, the performance increased to 98.57%. 
It was observed that the performances of all algorithms increased, 
with the lowest performance belonging to the CA at 95.71%. With 
the dataset balanced with the SMOTE method, the fault diagnosis 
accuracy of the LGBM algorithm was 100%. When the results of the 
other classification algorithms were examined, higher performances 
were achieved compared to Dataset-1. Using the dataset augmented 

with the ROS method, the LGBM algorithm achieved the highest 
accuracy of 98.32%. On the dataset processed with the ADASYN 
method, the highest accuracy was also achieved by the LGBM algo-
rithm at 98.86%. Fig. 4 presents the results comparatively.

The results of the classification process performed on the unbal-
anced dataset and the balanced dataset using the SMOTE method 
for fault diagnosis on Dataset-2 are presented in Table VII. In the clas-
sification process performed on the unbalanced dataset, the highest 
diagnostic accuracy was achieved with LGBM. The algorithm’s per-
formance was lower in the Fault Free case and highest in the String-
to-string fault case. This is because the data in the Fault Free case is a 
minority compared to the other cases. When fault diagnosis was per-
formed on the balanced dataset using the SMOTE method, the LGBM 
algorithm performed best. An examination of the obtained results 
reveals that the diagnostic accuracy for states 0 and 1 increases with 
the increase in data.

The performance metrics for the CA, which performed best in fault 
diagnosis using the dataset balanced with the ROS method, are pre-
sented in Table VIII, and the results for the LGBM algorithm on the 
dataset augmented with the ADASYN method are presented in Table 
IX. When the results were examined, it was observed that data bal-
ancing methods increased the overall fault diagnosis ability of the 
algorithms in fault diagnosis using Dataset-2. When examined with 
performance metrics, it was observed that the increased data also 
increased the algorithms’ ability to identify individual faults.

IV. DISCUSSION
This study investigates the use of machine learning methods for diag-
nosing short-circuit faults in solar PV systems. A dataset obtained 

98.57
100

98.32 98.8698.32

92

94

96

98

100

102

Imbalanced 
Dataset

SMOTE ROS ADASYN

LightGBM XgBoost Random Forest Cat Boost

Fig. 4. Fault diagnosis accuracy for Dataset-2.

TABLE VII. 
PERFORMANCE METRICS FOR RAW DATASET-2 AND SMOTE METHOD IN LGBM ALGORITHM

Imbalanced Dataset

LightGBM

 Precision Recall F1-Score Support

 0 0.93 1.00 0.96 25

1 0.97 0.94 0.96 36

2 1.00 0.97 0.99 35

3 1.00 1.00 1.00 44

Accuracy   0.98 140

SMOTE LightGBM

 Precision Recall F1-Score Support

0 0.99 0.99 0.99 45

1 0.98 0.98 0.98 44

2 1.00 1.00 1.00 45

3 1.00 1.00 1.00 45

Accuracy   1.00 179
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from the literature, which categorizes PV systems into four different 
operating states, was employed. However, the dataset was inher-
ently imbalanced, with unequal numbers of samples across the 
fault classes. To address this issue, data balancing techniques were 
applied to preprocess the dataset prior to classification. The impact 
of these balancing methods on fault diagnosis performance was 
then evaluated and compared.

To address class imbalance, data balancing and augmentation tech-
niques including ROS, SMOTE, and ADASYN were applied. These bal-
anced datasets were then used with machine learning algorithms 
such as RF, LGBM, XGBoost, and CA for fault diagnosis, and the cor-
responding results were obtained.

In the fault diagnosis experiments using Dataset-1, the highest accu-
racy under the imbalanced condition was obtained with the LGBM 
algorithm at 79.28%. When data augmentation was applied, SMOTE 
achieved the best performance with an accuracy of 86.59%. Using 
the ROS method improved the diagnostic capability of all classifiers, 
with the highest accuracy observed for XGBoost) and RF at 82.68%. 
With ADASYN, the best performance was recorded with XGBoost, 
achieving an accuracy of 81.6%.

In Dataset-2, two additional features were incorporated, which 
significantly enhanced the classification performance. Using the 

imbalanced dataset, the LGBM algorithm achieved an accuracy of 
98.57%. Among the data augmentation methods, the highest perfor-
mance was obtained with SMOTE, where LGBM reached 100% accu-
racy. With the ROS method, an accuracy of 98.32% was achieved by 
LGBM, RF, and CA. Using ADASYN, LGBM attained a fault diagnosis 
accuracy of 98.86%.

V. CONCLUSION
The comparison of results clearly demonstrates that data augmenta-
tion methods have a significant impact on algorithm performance. 
Among them, SMOTE consistently provided the greatest improve-
ment across all cases. In contrast, the ROS method simply replicates 
existing samples, while ADASYN generates new samples for harder-
to-learn instances without fully balancing the dataset, leading to rel-
atively lower performance. Overall, considering the dataset and fault 
types analyzed in this study, the best performance was obtained by 
combining the LGBM algorithm with the SMOTE method.

In future work, fault diagnosis will be extended to different data-
sets with varying input parameters and fault types. By increasing 
the number of available features within the dataset, we will provide 
more input features for classification algorithms, and the data will 
be scaled by applying different preprocessing methods. Additionally, 
hybrid approaches that integrate multiple diagnostic methods will be 
explored to further enhance classification accuracy and robustness.
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