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ABSTRACT

The growing complexity of electricity generation, driven by the diversification of energy sources and the integration of renewables, makes accurate short-term
forecasting crucial for grid stability and energy security. This study proposes a deep learning-based hybrid forecasting model designed for Tiirkiye’s dynamic
energy landscape. Using hourly electricity production data from December 1, 2019, to March 1, 2025, sourced from the EPIAS Transparency Platform, the
model analyzes generation patterns across 17 different sources, including both fossil fuels and renewables. The proposed architecture combines Long Short-
Term Memory networks and Transformer models to effectively capture complex time-dependent relationships in electricity generation. To improve accuracy,
preprocessing techniques such as time-based interpolation, normalization, and principal component analysis were applied. Experimental results demonstrate
strong forecasting performance, achieving a mean absolute error of 589.50, a root mean squared error of 762.41, and a coefficient of determination (R?) of
0.98017 for 1-hour ahead predictions, and an R? of 0.87813 for 1-day ahead predictions. These findings underline the model’s potential to support operational

planning, market regulation, and policy-making processes, particularly in emerging economies with dynamic and heterogeneous energy infrastructures.

Index Terms—Deep learning, electricity generation, short-term forecasting

I.INTRODUCTION

Electricity is essential for modern life and plays a vital role in eco-
nomic development and social welfare [1]. Global electricity demand
continues to rise due to industrialization, urbanization, and digitaliza-
tion, requiring reliable and sustainable energy planning. Maintaining
the balance between generation and consumption is strategically
important for supply security and market stability [2, 3], and short-
term generation forecasting is key for supply-demand equilibrium,
market management, and operational planning [4, 5].

The increasing share of renewable sources, such as wind and solar,
introduces variability and uncertainty, challenging system opera-
tors in load balancing, reserve management, and supply planning
[6, 7]. These uncertainties pose both technical and economic risks,
making accurate and reliable generation forecasts essential. In
Turkiye, rising electricity demand is driven by population growth,
industrialization, and infrastructure investments [7, 8]. The energy
mix—comprising fossil fuels, hydro, solar, wind, and other alter-
natives—creates a technically and economically complex system
requiring effective management [9-11]. Accurate modeling of
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temporal variability across sources is crucial for reliable total gen-
eration forecasts.

This study forecasts Turkiye’s short-term total electricity genera-
tion using hourly data from 17 sources during 2019-2025, obtained
from EPIAS [12]. Predictable fossil fuels provide baseload genera-
tion, while wind and solar introduce variability. Other sources like
geothermal, biomass, and waste heat are relatively stable. The con-
current use of diverse sources creates a nonlinear generation pro-
file [13—-15], limiting traditional statistical models and motivating
Al-based approaches.

A hybrid model combining Long Short-Term Memory (LSTM) and
Transformer architectures is employed. LSTM captures short- and
long-term dependencies, while the Transformer leverages attention
mechanisms for time-independent information flow, enhancing pre-
diction accuracy [16, 17].

The remainder of this paper is organized as follows: Section 2 reviews
related literature, Section 3 details methodology. Section 4 presents
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experimental results and performance analysis, and Section 5 con-
cludes with insights and future research directions.

Il. RELATED WORKS

Accurate forecasting of electricity generation is of critical impor-
tance for ensuring effective energy management and maintaining
the balance between supply and demand in modern power systems.
In recent years, numerous studies have explored the integration of
machine learning (ML) and deep learning (DL) models with various
optimization algorithms to enhance prediction performance.

Li et al. [18] forecasted Tirkiye’s net electricity consumption by
combining ML algorithms such as XGBoost and CatBoost with opti-
mization techniques including Sparrow Search Algorithm (SSA),
Phasor Particle Swarm Optimization (PPSO), and Hybrid Grey Wolf
Optimization (GWO). Among these, XGBoost-SSA achieved the high-
est accuracy, emphasizing the impact of GDP, transmitted energy,
and trade variables on predictive performance. For short-term load
forecasting, Fan et al. [4] proposed a hybrid DL model, EWT-CNN-
S-RNN + LSTM, which employed Empirical Wavelet Transform for
feature extraction, CNN for spatial learning, and RNN with LSTM for
temporal analysis, with hyperparameters tuned via Bayesian optimi-
zation. The model demonstrated high accuracy and strong general-
ization on datasets from Australia and Switzerland.

Aslam et al. [19] reviewed DL methods for forecasting power load and
renewable generation in smart microgrids, evaluating models such as
LSTM, Gated Recurrent Units (GRU), Inception Network, and Deep
Belief Network (DBN). They highlighted that performance strongly
depends on the quality and quantity of historical data and that uncer-
tainty handling remains a notable research gap. To address limita-
tions of conventional methods, Saxena et al. [20] proposed a hybrid
KNN-SVM model, which outperformed standard techniques including
LSTM in accuracy, precision, and specificity, underscoring the poten-
tial of solar energy forecasting for reliable power operations.

Wind energy forecasting challenges were reviewed by Sawant
et al. [21], who emphasized its inherent variability and recom-
mended hybrid approaches integrating multiple techniques for
improved performance. Zhang et al. [22] introduced a framework
combining Kolmogorov—Arnold Networks with TCN, BiLSTM, and
Transformer architectures, using real-world UK data to enhance

Main Points

e A hybrid Long Short-Term Memory-Transformer model is
proposed for short-term electricity generation forecasting in
Turkiye.

e The model uses hourly data from 17 fossil-based and renew-
able energy sources.

e Advanced preprocessing (interpolation, normalization, prin-
cipal component analysis) enhances accuracy and efficiency.

e Real-world EPIAS data ensure practical and reproducible
results.

e  The model supports real-time energy planning and adapts to
renewable energy variability.

accuracy, robustness, and adaptability under economic and climatic
variations. Wang et al. [23] developed CEEMDAN-SE-TR-BiGRU-
Attention, decomposing complex wind signals with CEEMDAN and
Sample Entropy, then processing them through Transformer-BiGRU-
attention networks, achieving high accuracy across low- and high-
frequency components under varying meteorological conditions.

For photovoltaic forecasting, Xiang et al. [24] proposed proposed
a hybrid model combining Temporal Convolutional Networks (TCN)
and GRU with an Efficient Channel Attention network (TCN-ECANet-
GRU), which captures spatial and temporal features effectively, while
Guldiarek [25] improved short-term wind speed prediction using
an Artificial Neural Network (ANN) combined with the Dragonfly
Algorithm. lbrahim et al. [26] introduced a CNN-LSTM autoencoder
hybrid for short-term PV generation, showing strong performance
metrics. Buratto et al. [27] addressed biomass generation variabil-
ity with a Wavelet-CNN-LSTM model in Brazil, achieving a MAPE of
1.48%. Wu et al. [28] proposed the STCM model (CNN-LSTM) for
ultra-short-term wind power forecasting, capturing both spatial and
temporal dependencies, outperforming traditional models.

The existing literature demonstrates that hybrid ML/DL models can
significantly enhance energy forecasting accuracy, particularly when
integrated with optimization algorithms and signal decomposition
techniques. Nevertheless, most studies are limited in scope, often
focusing on a narrow set of energy sources and lacking real-world
scalability. Addressing these limitations, this study proposes a com-
prehensive and scalable framework that forecasts electricity genera-
tion from 17 different energy sources using a novel LSTM-Transformer
hybrid architecture. Leveraging real-world data and advanced prepro-
cessing methods, the model is specifically designed to accommodate
the high variability of renewable energy, offering strong practical rel-
evance for energy planning in complex systems such as Turkiye’s.

11l. METHODOLOGY

In this study, a comprehensive dataset obtained from the EPIAS
Transparency Platform was utilized to model and forecast electricity
generation in Turkiye. During the data preparation phase, prepro-
cessing steps such as normalization and dimensionality reduction
using PCA were applied. Subsequently, a hybrid DL model was devel-
oped, combining LSTM layers, which capture temporal patterns in
time series data, with Transformer components that leverage atten-
tion mechanisms. The overall pseudo code of the proposed model
is presented in Table I. As shown in Table I, the model architec-
ture consists of four main stages: data preprocessing, LSTM layers,
Transformer module, and output layers, all designed to enhance pre-
diction accuracy. Detailed information regarding the pseudo code is
provided in this section.

A. Dataset Description and Features

The dataset employed in this research was sourced from the EPIAS
Transparency Platform [12] and comprises comprehensive electric-
ity generation data pertaining to Turkiye. It spans the period from
December 1, 2019, to March 1, 2025, encompassing approximately
5 years and 3 months of continuous hourly observations. Each
instance within the dataset corresponds to the amount of electric-
ity produced at a specific date and hour, providing a fine-grained
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TABLE I.
PSEUDO CODE OF PROPOSED MODEL FOR ELECTRICITY
GENERATION FORECASTING

Input:
X € R™7 : Hourly generation data (EPIAS)
h € {1,24} : Prediction horizon (1 hour or 24 hours)

Output:
¥ € R™ : Forecasted total generation
{MAE, RMSE, R?} : Performance metrics

1. Data Preprocessing

X' & TimeSeriesInterpolation(X) // Handle missing values

X & MinMaxNormalize(X') // Normalize to [0,1]

U ¢ PCA(X, variance=0.99) // Dimensionality reduction (U € R™3)

2. Model Architecture
0<¢{Bw }// Trainable parameters

Transformer

3. LSTM Component (Temporal Features)
Fort=1toT:
ht < LSTM(u,, A, 3; 867y0)

4. Transformer Component (Long-Term Dependencies)
H < [hy,..., h]

Z & MultiHeadAttention(Q=H, K=H, V=H; 6. // 4 heads, d =32

Transformer)

5. Prediction Head
¥y, € o(W, - Pool(Z) +b,,,)

6. Model Training

Objective: Minimize MSE(Y, Y)

Optimizer: Adam (Ir=0.001, B:=0.9, B,=0.999)
Batch size: 64, TimeSeriesSplit(k=5)

7. Forecasting Procedure

fori=1toh:

¥... ¢ Model(X,,,,) // lookback window
If i < h: update X with ¥,,,

end for
Return ¥, Evaluate(¥, ¥,

, Y.t // Return predictions and performance
metrics

temporal resolution essential for time series modeling and analy-
sis. The dataset consists of a total of 46 032 records, each capturing
detailed production figures across a diverse range of energy sources,
in addition to the overall generation amount.

The dataset represents electricity production from diverse genera-
tion technologies. “Natural Gas” corresponds to gas-fired plants,
“Dam (Hydroelectric)” to large-scale dams, while “Lignite” and “Run-
of-River (Hydroelectric)” reflect lignite coal and river-based hydro
production. It also includes outputs from “Imported Coal,” “Wind,”
“Solar,” “Fuel Oil”, “Geothermal”, “Asphaltite Coal,” “Hard Coal”,
“Biomass”, “Naphtha”, “LNG”, and cross-border “International”
imports. “Waste Heat” captures electricity from heat recovery pro-
cesses. Each entry contains a “Datetime” timestamp, and the “Total
(MWh)” column, aggregating hourly production from all sources,
serves as the dependent variable, with individual sources as inde-
pendent variables. The dataset’s temporal coverage and source
diversity provide a solid basis for analyzing Turkiye’s electricity gen-
eration dynamics and developing advanced forecasting models.

For preprocessing, missing values (<0.01%) were interpolated to
preserve temporal continuity. Outliers exceeding +3 standard devia-
tions within a 24-hour rolling window were cross-checked with EPIAS
records; genuine operational anomalies were retained to reflect real-
world variability. Exceptional variations due to regulatory changes or
events such as the COVID-19 pandemic were preserved to maintain
realistic operating conditions.

B. Normalization

In the normalization process, Min-Max normalization [29] was
applied to both dependent and independent variables. For this
purpose, all features were scaled to the range [0, 1] using the
MinMaxScaler method. As shown in (1), this technique rescales each
observation based on the minimum and maximum values of its cor-
responding feature.

X' — X — Xpmin (1)
Xmax — Xmin
Here, x represents the original value, x' denotes the normalized
value, and x,,, and x,, . are the minimum and maximum values of
the feature, respectively. Normalization mitigates scale disparities
among variables and is essential for balanced and stable model train-
ing, thereby supporting accurate forecasting.

C. Principal Component Analysis

In this study, principal component analysis (PCA) was applied as a
dimensionality reduction technique to transform the dataset into
a more compact and informative structure. The PCA is a statistical
method that projects high-dimensional data onto a lower-dimen-
sional subspace using a new set of linearly uncorrelated variables
known as principal components. This transformation aims to retain
the maximum amount of original information (variance) while reduc-
ing the number of features [30]. The first step in implementing PCA
involves computing the covariance matrix of the normalized dataset.
As shown in (2), the covariance matrix R is derived by taking the aver-
age of the outer products of each data point’s deviation from the
mean vector.

n

1 ,
R—;Z(Z,-—u)(zf—u) (2)

i=1

Here, z, denotes the normalized feature vector of the ith sample, pt is
the mean vector of all samples, and n indicates the total number of
observations. To extract the principal components, an eigen decom-
position is performed on the covariance matrix. As shown in (3), the
eigenvectors and their corresponding eigenvalues are computed as
follows.

Rvi=A\v;,i=12,...,m (3)

Here, each eigenvector v, represents a principal direction in the fea-
ture space, indicating a new axis along which the data varies the
most. The associated eigenvalue A, quantifies the amount of vari-
ance explained along that direction. The parameter m denotes the
original number of features in the dataset [31-33]. After computing
the eigenvalues, they are sorted in descending order, and the top
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principal components that collectively account for at least 99% of
the total variance are selected. The cumulative variance explained by
the selected principal components served as the basis for determin-
ing the number of features to retain. As a result of this dimension-
ality reduction process, the number of features was reduced from
16 to 13, satisfying the criterion of preserving at least 99% of the
total variance. This transformation effectively compresses the data
while maintaining the integrity of the original information, ensuring
that critical temporal and source-specific patterns are preserved.
Consequently, it improves computational efficiency and enhances
the performance of learning algorithms by accelerating the training
process and reducing the risk of overfitting, while interpretability is
maintained since PCA components are linear combinations of the
original features.

Upon the completion of the preprocessing phase, which included
normalization and dimensionality reduction through principal com-
ponent extraction, the dataset was suitably prepared for DL model
development. The input data, consisting of the scaled and reduced
feature matrix and the associated target values, satisfies the require-
ments for efficient and stable model training, offering a clean, consis-
tent, and analytically tractable representation of the original dataset.

D. Long Short-Term Memory and Transformer Networks

Long Short-Term Memory networks are an advanced structure
designed to overcome the core issues faced by traditional Recurrent
Neural Networks (RNNs), such as vanishing and exploding gradients,
which hinder learning long-term dependencies. Due to this robust
architecture, LSTM models are highly effective in time-sensitive
applications such as time series analysis, language modeling, speech
recognition, and network-based intrusion detection systems. The
LSTM cells consist of specialized units that transmit and regulate
information over time steps. Each cell contains three key gates: the
forget gate, the input gate, and the output gate. These gates are
responsible for updating the cell state and hidden state [34].

The forget gate first determines which parts of the previous cell state
should be retained or discarded. This process is carried out using a
sigmoid activation function, as represented in (4).

[0 :A(Wx¢)-|:2t—1lut:|+ bxd) (4)

Here, z,_, is the previous time step’s cell output, u, is the input vector
at the current time step, W, is the weight matrix, and bw is the bias
term. The sigmoid function, o, outputs values between 0 and 1, deter-
mining how much of the previous information should be forgotten.
The second step involves the input gate, which controls how much
new information will be added to the cell. This process consists of
two parts. First, the gate (/) which determines what information will
be updated is computed using the sigmoid function, as shown in (5).

lt:(‘”xl-[zt—l:ut:l"' bxl) (5)

Next, a candidate information vector (W,) is is created using the
hyperbolic tangent function, as in (6).

\Pt :tanh(Wxg .I:Zt,l,utjl"' be ) (6)

The updated cell state W, is obtained by combining the forget gate’s
impact on past information and the input gate’s impact on new infor-
mation. This process is represented in (7).

Yo=¢ Weut+l Y (7)
Here, ® denotes the Hadamard product (element-wise multiplica-
tion). The cell updates its state by considering both past and new
information. Finally, the output gate w, determines which portion of
the current cell state will be output. This gate is defined by a sigmoid
function, as shown in (8).

E’ t =A(Wxé '[thllut:l-i— bxé ) (8)
Based on this value, the cell output (z,) is calculated using (9).
z=E. tanh(¥,) (9)

This series of steps allows the LSTM cell to selectively remember
and forget information, thus enabling effective learning of temporal
dependencies [34-36].

The Transformer architecture, in contrast, was designed to address
the limitations of traditional sequence-based models by overcom-
ing the constraints of sequential data processing and improving the
handling of long-range dependencies. Unlike RNNs, the Transformer
does not rely on sequential processing and instead processes the
entire input simultaneously, allowing for efficient parallelization [37,
38]. The core component of the Transformer is the self-attention
mechanism, which enables the model to evaluate the importance of
each input token relative to others, regardless of their position in the
sequence. This mechanism enables the model to capture both local
and global dependencies efficiently without the need for sequential
data flow. The Transformer consists of two main components: the
encoder and the decoder. The encoder processes the input sequence
and generates a representation of the data, while the decoder uses
this representation to produce the output sequence. Both the
encoder and decoder utilize multiple layers of attention mechanisms
and feed-forward neural networks, allowing the model to focus on
various parts of the input sequence at each decoding step. A key
feature of the Transformer is its use of scaled dot-product atten-
tion, which calculates similarity scores between query and key vec-
tors and applies the softmax function to compute attention weights.
These weights adjust the importance of corresponding value vec-
tors, enabling the model to focus on the most relevant parts of the
sequence. Additionally, multi-head attention is employed to apply
attention mechanisms in parallel across multiple subspaces, which
enhances the model’s ability to capture diverse relationships in the
data [39, 40].

In the proposed study, the Optuna method was used for hyper-
parameter selection [41]. Optuna is an open-source optimiza-
tion framework that utilizes Bayesian optimization techniques to
efficiently search for optimal hyperparameters. By leveraging this
approach, the model’s hyperparameters are selected based on their
impact on the model's performance, ensuring more accurate and
efficient results [41-43]. Approximately 10% of the earliest dataset
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observations were temporarily set aside as a validation subset to
prevent any future data leakage during hyperparameter tuning. The
obtained hyperparameter values are as shown in Table II.

As seen in Table I, the model begins with sequential layers composed
of LSTM cells, incorporating three LSTM blocks with 128, 64, and 32
units, respectively. These layers are designed to capture hierarchical
temporal dependencies in the sequential data. The outputs of the
LSTM blocks are first passed through a max pooling layer and then
fed into the multi-head self-attention layer. This combination allows
the model to integrate hierarchical temporal features captured by
LSTM with long-range dependencies captured by the Transformer.
This attention layer comprises 4 heads with a key dimension of 32,
allowing the model to attend to multiple aspects of the sequence in
parallel. The attention outputs are then passed through dense lay-
ers configured with 64 units and a dropout rate of 0.2. The RelLU
activation function [44] is used in the dense layers to introduce non-
linearity, thereby enhancing the model’s capacity to learn complex
patterns. Finally, the learned feature representation is fed into the
output layer, which employs a linear activation function for the pre-
diction task. During training, the model is optimized using the Adam
optimizer with a learning rate of 0.001 and a batch size of 64. The
mean squared error (MSE) [45] is used as the loss function, aiming to
minimize the difference between predicted and true values through-
out the training process.

IV.RESULTS

The performance of the proposed forecasting model was assessed
using a real-world time series dataset on electricity generation.
Given the sequential nature of time series data, it was critical to

preserve the temporal order during the validation phase. For this
reason, a time-aware cross-validation approach was adopted. In
particular, the time-series split method from the scikit-learn library
[46] was utilized. This method is specifically designed for time series
problems and differs from standard k-fold cross-validation by avoid-
ing data leakage from future to past.

For hyperparameter optimization using Optuna, a small subset cor-
responding to approximately 10% of the earliest observations in the
dataset was temporarily set aside. This subset was used exclusively
to select the optimal hyperparameters while ensuring no future data
was exposed to the model. After tuning, the model was retrained
using the remaining data for final evaluation.

The remainder of the dataset was then divided into five sequential
folds for time-series cross-validation. In each fold, the training set
was progressively expanded to include more historical data, while
the test set always consisted of subsequent, unseen observations.
This structure ensures that the model is trained on past data and
evaluated on future data, mimicking a real-world forecasting sce-
nario. The time-series split thereby maintains the chronological
integrity of the data and provides a realistic estimate of the model's
generalization performance in temporal tasks.

The development of the proposed model was performed using the
Python programming language. For implementing the DL archi-
tecture, the TensorFlow 2.18 library was utilized, while data pre-
processing was carried out with the aid of Pandas, NumPy, and
scikit-learn libraries. Visualization tasks were executed using the
Matplotlib library. The experiments were carried out on a desktop

TABLE Il.
SELECTED HYPERPARAMETERS FOR THE PROPOSED MODEL

Layer/Module Hyperparameter Range/Values Selected Value
LSTM layers Istm_units [32, 64, 128, 256] 128
Istm_units [32, 64, 128, 256] 64
Istm_units [32, 64, 128, 256] 32
Istm_dropout [0.1,0.5] 0.2
Pooling pooling_type [“max”, “average”] “max”
Multi-head attention num_heads [2, 8] 4
key_dim [16, 64] 32
Dense layers dense_units [32, 64, 128] 64
dense_dropout [0.1,0.5] 0.2
activation_function [“relu”, “tanh”, “gelu”] “relu”
Training parameters learning_rate [1e-5, 1le-2] 0.001
batch_size [32,128] 64
optimizer [“adam”, “rmsprop”, “nadam”] “adam”
Loss function loss “mse”, “mae”, “huber”] “mse”
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computer equipped with an Intel® Core™ i7-10700K CPU @ 3.80
GHz, 32 GB of RAM, and an NVIDIA GeForce RTX 3060 graphics
processing unit. The training duration varied depending on the
prediction horizon and dataset size; during the time-series split
cross-validation experiments, the model predicting 1 hour ahead
(horizon =1) completed training in approximately 27 minutes,
whereas the model predicting 1 day ahead (horizon = 24) required
approximately 91 minutes.

The evaluation of the proposed model’s performance is conducted
using three key metrics: Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and the Coefficient of Determination (R?) [47].
The MAE measures the average magnitude of errors in the predicted
values, RMSE penalizes larger errors by squaring the differences
between predicted and actual values, and R? indicates the propor-
tion of variance in the actual data that is captured by the model, with
values closer to 1 indicating a better fit.

A. One-Hour Ahead Electricity Generation Forecasting

The 1-hour ahead electricity generation forecasting results are sum-
marized in Table lll and illustrated in Fig. 1. Using five-fold time-series
cross-validation, the model achieved an average MAE of 589.50
(1.67%), RMSE of 762.41 (2.15%), and R? of 0.98017, demonstrating
high accuracy and robustness.

As shown in Fig. 1 and Table Ill, predicted values closely follow actual
generation, effectively capturing short-term temporal patterns.

B. One-Day Ahead Electricity Generation Forecasting

The forecasting performance for the 1-day ahead horizon is pre-
sented in Table IV and visualized in Fig. 2. The model achieved an
average MAE of 1328.24 (3.75%), RMSE of 1908.74 (5.39%), and R?
of 0.87813.

As shown in Table IV, Fold 3 yielded the strongest results across all
metrics, whereas Fold 5 recorded higher errors, likely reflecting local
anomalies in the data. Compared to the 1-hour horizon, perfor-
mance is lower as expected due to increased uncertainty in longer-
term forecasts.

TABLE III.
PERFORMANCE METRICS OF THE MODEL FOR 1-HOUR AHEAD
ELECTRICITY GENERATION FORECASTING

55000 |

— Prediction|
50000

45000
40000

35000

Production (MWh)

8
3
3
=

25000

20000

15000

0 10000 20000 30000 40000
Time

Fig. 1. Forecasting results of the 1-hour ahead electricity generation
model.

As illustrated in Fig. 2, the model effectively tracks the overall trend
of actual electricity generation, with only minor deviations around
sharp peaks and troughs. The close alignment highlights the architec-
ture’s ability to capture seasonal and periodic patterns, supported by
the attention and temporal pooling mechanisms that enhance long-
range dependency modeling.

These metrics indicate that the model shows high performance
for both 1-hour and 1-day ahead electricity generation forecasting
tasks, with high accuracy for short-term predictions and satisfactory
performance for longer-term forecasts. The 1-hour ahead forecast
achieves an impressive R? of 0.98017, indicating excellent predic-
tive accuracy, while the 1-day ahead forecast, with an R? of 0.87813,
shows good performance, albeit with some increased error due to
the complexity of predicting over longer time spans.

In this study, we conducted a comprehensive evaluation of the
proposed LSTM-Transformer hybrid model along with its individual

— Actual
— Prediction

MAE RMSE é

Fold No. MAE (%) RMSE (%) R? =00

Fold 1 683.95 1.93 886.95 2.51 0.97351 -

Fold 2 492.68 1.39 635.46 1.80 0.98440 woe

Fold 3 44227  1.25 578.74 164  0.98676 -

Fold 4 47640 135 617.77 175  0.98758 e ‘

Fold 5 852.21 2.41 1093.14  3.09 0.96860 N N : . " B 1es
Average 589.50 1.67 762.41 2.15 0.98017 Fig. 2. Forecasting results of the 1-day ahead electricity generation

2Percentages relative to average generation (35381.73 MWh).

model.
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TABLE IV.
PERFORMANCE METRICS OF THE MODEL FOR 1-DAY AHEAD

ELECTRICITY GENERATION FORECASTING

MAE RMSE
Fold No. MAE (%) RMSE (%) R?

Fold 1 148095 418  2077.07 587  0.85545
Fold 2 1106.87 3.3  1637.75  4.63  0.89629
Fold 3 111220 3.4  1567.99 443  0.90281
Fold 4 1257.61  3.55 182028 514  0.89236
Fold 5 1683.56  4.76 244061 690  0.84376
Average 132824 375  1908.74 539  0.87813

aPercentages relative to average generation (35381.73 MWh).

components (standalone LSTM and Transformer models). The
comparative results for 1-hour ahead forecasts are presented in
Table V.

As shown in Table V, the proposed model achieves the lowest MAE
and RMSE values and the highest R? scores. In contrast, the stand-
alone LSTM and Transformer models exhibit higher error rates,
particularly in daily predictions, indicating the superior predictive
performance of the hybrid approach.

Additionally, this study provides a detailed examination of perfor-
mance variations across different energy sources, as illustrated in
Table VI. Only those with MAE (%) or RMSE (%) above 0.3, indicating
significant impact on total generation error, are included. As shown
in Table VI, short-term (1-hour ahead) forecasts exhibit notably low
error rates for intermittent renewable sources such as wind and solar,
indicating the model’s effectiveness in capturing their short-term
fluctuations. In contrast, fossil fuel-based sources like natural gas and
imported coal display moderately higher error rates. Hydroelectric
generation records the highest error among renewables, which is
likely attributable to operational scheduling and water management
practices that introduce variability independent of weather condi-
tions, thereby increasing forecasting complexity.

The proposed model combines high forecasting accuracy with practi-
cal applications. In grid management, it supports real-time balanc-
ing of renewable fluctuations, optimizes hydropower releases, and

TABLE V.
MODEL PERFORMANCE COMPARISON
MAE RMSE
Model MAE (%) RMSE (%) R?
Proposed model 589.50 1.67 762.41 2.16 0.98017
Only LSTM 601.01 1.70 773.21 2.19 0.97935
Only transformer  666.60 1.88 856.33 2.42 0.97513

2Percentages relative to average generation (35381.73 MWh).

TABLE VI.
1-HOUR AHEAD FORECAST PERFORMANCE BY ENERGY SOURCE
MAE RMSE

Energy Source MAE (%)? RMSE (%)? R?
Natural gas 372.55 1.05 493.01 1.39 0.983
Hydroelectric 421.77 1.19 552.98 1.56 0.959
Imported coal 170.79 0.48 253.24 0.72 0.980
Wind 130.79 0.37 169.77 0.48 0.993
Solar 46.58 0.13 73.05 0.31 0.931

2Percentages relative to average generation (35381.73 MWh).

plans reserve capacity. In market regulation, it enables day-ahead
price forecasting, bidding strategy optimization, and early detection
of abnormal price patterns. In policy-making, it aids capacity mecha-
nism design, evaluation of renewable integration scenarios, and pri-
oritization of infrastructure investments. The model’s low inference
time makes real-time deployment feasible, while the complexity of
training favors offline execution.

While the case study focuses on Tiirkiye, the proposed framework
is adaptable to other emerging economies with comparable energy
system characteristics. Its transferability depends on factors such as
the diversity of the energy mix, grid stability, and the availability of
high-resolution operational data, which should be considered when
applying the model in different national contexts.

V. CONCLUSION

The increasing complexity of modern energy systems, driven by the
diversification of generation sources and the growing integration
of renewables, has underscored the necessity for accurate short-
term electricity generation forecasting. In response to this criti-
cal demand, the present study has demonstrated the efficacy of
a DL-based forecasting framework that combines LSTM networks
with a multi-head self-attention mechanism and robust regulariza-
tion strategies. The proposed architecture effectively captures both
short- and long-range temporal dependencies inherent in electric-
ity generation time series, thereby enhancing predictive precision.
Empirical evaluations conducted on one-hour ahead forecasting
tasks revealed that the model consistently achieves high predic-
tive performance, with an average MAE of 589.50 (1.67%), RMSE
of 762.41 (2.15%), and R? of 0.98017 across five-fold cross-valida-
tion. These results indicate the model’s robustness in capturing
short-term fluctuations and daily-seasonal trends in electricity
generation. Visual analyses further corroborate these findings by
illustrating a strong alignment between predicted and actual gener-
ation values. For the one-day ahead forecasting horizon, the model
attained an average MAE of 1328.24 (3.75%), RMSE of 1908.74
(5.39%), and R?* of 0.87813. While a slight decline in accuracy was
observed due to the inherent uncertainty in long-term predictions,
the model maintained a satisfactory level of performance, demon-
strating its potential applicability for medium-range planning tasks.
Overall, the findings of this study affirm the model’s capability to
address the forecasting challenges posed by dynamic, multi-source
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energy systems such as that of Turkiye. The model presents a prom-
ising tool for enhancing operational decision-making, ensuring
supply-demand equilibrium, and supporting strategic planning in
energy markets. Its integration into real-time monitoring and dis-
patch systems could significantly contribute to the resilience and
stability of power systems, particularly in regions with high renew-
able energy penetration.

Future work could explore the incorporation of exogenous variables
such as meteorological conditions, market dynamics, and demand-
side behavior to further enhance forecasting accuracy. Additionally,
adapting the model for real-time deployment and evaluating its
performance under different seasonal or system stress scenarios
would offer valuable insights for large-scale, data-driven energy
management.
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