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ABSTRACT

The growing complexity of electricity generation, driven by the diversification of energy sources and the integration of renewables, makes accurate short-term 
forecasting crucial for grid stability and energy security. This study proposes a deep learning-based hybrid forecasting model designed for Türkiye’s dynamic 
energy landscape. Using hourly electricity production data from December 1, 2019, to March 1, 2025, sourced from the EPİAŞ Transparency Platform, the 
model analyzes generation patterns across 17 different sources, including both fossil fuels and renewables. The proposed architecture combines Long Short-
Term Memory networks and Transformer models to effectively capture complex time-dependent relationships in electricity generation. To improve accuracy, 
preprocessing techniques such as time-based interpolation, normalization, and principal component analysis were applied. Experimental results demonstrate 
strong forecasting performance, achieving a mean absolute error of 589.50, a root mean squared error of 762.41, and a coefficient of determination (R2) of 
0.98017 for 1-hour ahead predictions, and an R2 of 0.87813 for 1-day ahead predictions. These findings underline the model’s potential to support operational 
planning, market regulation, and policy-making processes, particularly in emerging economies with dynamic and heterogeneous energy infrastructures.

Index Terms—Deep learning, electricity generation, short-term forecasting

I. INTRODUCTION
Electricity is essential for modern life and plays a vital role in eco-
nomic development and social welfare [1]. Global electricity demand 
continues to rise due to industrialization, urbanization, and digitaliza-
tion, requiring reliable and sustainable energy planning. Maintaining 
the balance between generation and consumption is strategically 
important for supply security and market stability [2, 3], and short-
term generation forecasting is key for supply-demand equilibrium, 
market management, and operational planning [4, 5].

The increasing share of renewable sources, such as wind and solar, 
introduces variability and uncertainty, challenging system opera-
tors in load balancing, reserve management, and supply planning 
[6, 7]. These uncertainties pose both technical and economic risks, 
making accurate and reliable generation forecasts essential. In 
Türkiye, rising electricity demand is driven by population growth, 
industrialization, and infrastructure investments [7, 8]. The energy 
mix—comprising fossil fuels, hydro, solar, wind, and other alter-
natives—creates a technically and economically complex system 
requiring effective management [9–11]. Accurate modeling of 

temporal variability across sources is crucial for reliable total gen-
eration forecasts.

This study forecasts Türkiye’s short-term total electricity genera-
tion using hourly data from 17 sources during 2019–2025, obtained 
from EPİAŞ [12]. Predictable fossil fuels provide baseload genera-
tion, while wind and solar introduce variability. Other sources like 
geothermal, biomass, and waste heat are relatively stable. The con-
current use of diverse sources creates a nonlinear generation pro-
file [13–15], limiting traditional statistical models and motivating 
AI-based approaches.

A hybrid model combining Long Short-Term Memory (LSTM) and 
Transformer architectures is employed. LSTM captures short- and 
long-term dependencies, while the Transformer leverages attention 
mechanisms for time-independent information flow, enhancing pre-
diction accuracy [16, 17].

The remainder of this paper is organized as follows: Section 2 reviews 
related literature, Section 3 details methodology. Section 4 presents 
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experimental results and performance analysis, and Section 5 con-
cludes with insights and future research directions.

II. RELATED WORKS
Accurate forecasting of electricity generation is of critical impor-
tance for ensuring effective energy management and maintaining 
the balance between supply and demand in modern power systems. 
In recent years, numerous studies have explored the integration of 
machine learning (ML) and deep learning (DL) models with various 
optimization algorithms to enhance prediction performance.

Li et  al. [18] forecasted Türkiye’s net electricity consumption by 
combining ML algorithms such as XGBoost and CatBoost with opti-
mization techniques including Sparrow Search Algorithm (SSA), 
Phasor Particle Swarm Optimization (PPSO), and Hybrid Grey Wolf 
Optimization (GWO). Among these, XGBoost-SSA achieved the high-
est accuracy, emphasizing the impact of GDP, transmitted energy, 
and trade variables on predictive performance. For short-term load 
forecasting, Fan et  al. [4] proposed a hybrid DL model, EWT-CNN-
S-RNN + LSTM, which employed Empirical Wavelet Transform for 
feature extraction, CNN for spatial learning, and RNN with LSTM for 
temporal analysis, with hyperparameters tuned via Bayesian optimi-
zation. The model demonstrated high accuracy and strong general-
ization on datasets from Australia and Switzerland.

Aslam et al. [19] reviewed DL methods for forecasting power load and 
renewable generation in smart microgrids, evaluating models such as 
LSTM, Gated Recurrent Units (GRU), Inception Network, and Deep 
Belief Network (DBN). They highlighted that performance strongly 
depends on the quality and quantity of historical data and that uncer-
tainty handling remains a notable research gap. To address limita-
tions of conventional methods, Saxena et al. [20] proposed a hybrid 
KNN-SVM model, which outperformed standard techniques including 
LSTM in accuracy, precision, and specificity, underscoring the poten-
tial of solar energy forecasting for reliable power operations.

Wind energy forecasting challenges were reviewed by Sawant 
et  al. [21], who emphasized its inherent variability and recom-
mended hybrid approaches integrating multiple techniques for 
improved performance. Zhang et  al. [22] introduced a framework 
combining Kolmogorov–Arnold Networks with TCN, BiLSTM, and 
Transformer architectures, using real-world UK data to enhance 

accuracy, robustness, and adaptability under economic and climatic 
variations. Wang et  al. [23] developed CEEMDAN-SE-TR-BiGRU-
Attention, decomposing complex wind signals with CEEMDAN and 
Sample Entropy, then processing them through Transformer-BiGRU-
attention networks, achieving high accuracy across low- and high-
frequency components under varying meteorological conditions.

For photovoltaic forecasting, Xiang et  al. [24] proposed proposed 
a hybrid model combining Temporal Convolutional Networks (TCN) 
and GRU with an Efficient Channel Attention network (TCN-ECANet-
GRU), which captures spatial and temporal features effectively, while 
Güldürek [25] improved short-term wind speed prediction using 
an Artificial Neural Network (ANN) combined with the Dragonfly 
Algorithm. Ibrahim et al. [26] introduced a CNN-LSTM autoencoder 
hybrid for short-term PV generation, showing strong performance 
metrics. Buratto et al. [27] addressed biomass generation variabil-
ity with a Wavelet-CNN-LSTM model in Brazil, achieving a MAPE of 
1.48%. Wu et  al. [28] proposed the STCM model (CNN-LSTM) for 
ultra-short-term wind power forecasting, capturing both spatial and 
temporal dependencies, outperforming traditional models.

The existing literature demonstrates that hybrid ML/DL models can 
significantly enhance energy forecasting accuracy, particularly when 
integrated with optimization algorithms and signal decomposition 
techniques. Nevertheless, most studies are limited in scope, often 
focusing on a narrow set of energy sources and lacking real-world 
scalability. Addressing these limitations, this study proposes a com-
prehensive and scalable framework that forecasts electricity genera-
tion from 17 different energy sources using a novel LSTM-Transformer 
hybrid architecture. Leveraging real-world data and advanced prepro-
cessing methods, the model is specifically designed to accommodate 
the high variability of renewable energy, offering strong practical rel-
evance for energy planning in complex systems such as Türkiye’s.

III. METHODOLOGY
In this study, a comprehensive dataset obtained from the EPİAŞ 
Transparency Platform was utilized to model and forecast electricity 
generation in Türkiye. During the data preparation phase, prepro-
cessing steps such as normalization and dimensionality reduction 
using PCA were applied. Subsequently, a hybrid DL model was devel-
oped, combining LSTM layers, which capture temporal patterns in 
time series data, with Transformer components that leverage atten-
tion mechanisms. The overall pseudo code of the proposed model 
is presented in Table I. As shown in Table I, the model architec-
ture consists of four main stages: data preprocessing, LSTM layers, 
Transformer module, and output layers, all designed to enhance pre-
diction accuracy. Detailed information regarding the pseudo code is 
provided in this section.

A. Dataset Description and Features
The dataset employed in this research was sourced from the EPİAŞ 
Transparency Platform [12] and comprises comprehensive electric-
ity generation data pertaining to Türkiye. It spans the period from 
December 1, 2019, to March 1, 2025, encompassing approximately 
5 years and 3 months of continuous hourly observations. Each 
instance within the dataset corresponds to the amount of electric-
ity produced at a specific date and hour, providing a fine-grained 

Main Points

•	 A hybrid Long Short-Term Memory-Transformer model is 
proposed for short-term electricity generation forecasting in 
Türkiye.

•	 The model uses hourly data from 17 fossil-based and renew-
able energy sources.

•	 Advanced preprocessing (interpolation, normalization, prin-
cipal component analysis) enhances accuracy and efficiency.

•	 Real-world EPİAŞ data ensure practical and reproducible 
results.

•	 The model supports real-time energy planning and adapts to 
renewable energy variability.
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temporal resolution essential for time series modeling and analy-
sis. The dataset consists of a total of 46 032 records, each capturing 
detailed production figures across a diverse range of energy sources, 
in addition to the overall generation amount.

The dataset represents electricity production from diverse genera-
tion technologies. “Natural Gas” corresponds to gas-fired plants, 
“Dam (Hydroelectric)” to large-scale dams, while “Lignite” and “Run-
of-River (Hydroelectric)” reflect lignite coal and river-based hydro 
production. It also includes outputs from “Imported Coal,” “Wind,” 
“Solar,” “Fuel Oil”, “Geothermal”, “Asphaltite Coal,” “Hard Coal”, 
“Biomass”, “Naphtha”, “LNG”, and cross-border “International” 
imports. “Waste Heat” captures electricity from heat recovery pro-
cesses. Each entry contains a “Datetime” timestamp, and the “Total 
(MWh)” column, aggregating hourly production from all sources, 
serves as the dependent variable, with individual sources as inde-
pendent variables. The dataset’s temporal coverage and source 
diversity provide a solid basis for analyzing Türkiye’s electricity gen-
eration dynamics and developing advanced forecasting models.

For preprocessing, missing values (<0.01%) were interpolated to 
preserve temporal continuity. Outliers exceeding ±3 standard devia-
tions within a 24-hour rolling window were cross-checked with EPİAŞ 
records; genuine operational anomalies were retained to reflect real-
world variability. Exceptional variations due to regulatory changes or 
events such as the COVID-19 pandemic were preserved to maintain 
realistic operating conditions.

B. Normalization
In the normalization process, Min-Max normalization [29] was 
applied to both dependent and independent variables. For this 
purpose, all features were scaled to the range [0, 1] using the 
MinMaxScaler method. As shown in (1), this technique rescales each 
observation based on the minimum and maximum values of its cor-
responding feature.

	 � �
�
�

x x x
x x

min

max min
� (1)

Here, x represents the original value, ′x  denotes the normalized 
value, and xmin and xmax are the minimum and maximum values of 
the feature, respectively. Normalization mitigates scale disparities 
among variables and is essential for balanced and stable model train-
ing, thereby supporting accurate forecasting.

C. Principal Component Analysis
In this study, principal component analysis (PCA) was applied as a 
dimensionality reduction technique to transform the dataset into 
a more compact and informative structure. The PCA is a statistical 
method that projects high-dimensional data onto a lower-dimen-
sional subspace using a new set of linearly uncorrelated variables 
known as principal components. This transformation aims to retain 
the maximum amount of original information (variance) while reduc-
ing the number of features [30]. The first step in implementing PCA 
involves computing the covariance matrix of the normalized dataset. 
As shown in (2), the covariance matrix R is derived by taking the aver-
age of the outer products of each data point’s deviation from the 
mean vector.
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Here, zi denotes the normalized feature vector of the ith sample, μ is 
the mean vector of all samples, and n indicates the total number of 
observations. To extract the principal components, an eigen decom-
position is performed on the covariance matrix. As shown in (3), the 
eigenvectors and their corresponding eigenvalues are computed as 
follows.

	 Rv v i mi i i� � �� , , ,1,2 � (3)

Here, each eigenvector νi represents a principal direction in the fea-
ture space, indicating a new axis along which the data varies the 
most. The associated eigenvalue λi quantifies the amount of vari-
ance explained along that direction. The parameter m denotes the 
original number of features in the dataset [31–33]. After computing 
the eigenvalues, they are sorted in descending order, and the top 

TABLE I. 
PSEUDO CODE OF PROPOSED MODEL FOR ELECTRICITY 

GENERATION FORECASTING

Input:
X ∈ ℝⁿˣ¹⁷ : Hourly generation data (EPİAŞ)
h ∈ {1,24} : Prediction horizon (1 hour or 24 hours)

Output:
 Ŷ ∈ ℝⁿˣ¹ : Forecasted total generation
{MAE, RMSE, R²} : Performance metrics

1. Data Preprocessing
X′ ← TimeSeriesInterpolation(X) // Handle missing values
X̂ ← MinMaxNormalize(X′) // Normalize to [0,1]
U ← PCA(X̂, variance=0.99) // Dimensionality reduction (U ∈ ℝⁿˣ¹³)

2. Model Architecture
Θ ← {θLSTM, θTransformer} // Trainable parameters

3. LSTM Component (Temporal Features)
For t = 1 to T:
 ht ← LSTM(ut, ht-1; θLSTM)

4. Transformer Component (Long-Term Dependencies)
H ← [h1,…, ht]
Z ← MultiHeadAttention(Q=H, K=H, V=H; θTransformer) // 4 heads, dk=32

5. Prediction Head
ŷt ← σ(Wout· Pool(Z) + bout)

6. Model Training
Objective: Minimize MSE(Ŷ, Y)
Optimizer: Adam (lr=0.001, β₁=0.9, β₂=0.999)
Batch size: 64, TimeSeriesSplit(k=5)

7. Forecasting Procedure
for i = 1 to h:
Ŷt+i ← Model(Xt-w:t) // lookback window
If i < h: update X with Ŷt+i

end for
Return Ŷ, Evaluate(Ŷ, Ŷtest) // Return predictions and performance 
metrics



Karamollaoğlu. Hybrid Deep Learning Framework for Short-Term Electricity Generation

54

principal components that collectively account for at least 99% of 
the total variance are selected. The cumulative variance explained by 
the selected principal components served as the basis for determin-
ing the number of features to retain. As a result of this dimension-
ality reduction process, the number of features was reduced from 
16 to 13, satisfying the criterion of preserving at least 99% of the 
total variance. This transformation effectively compresses the data 
while maintaining the integrity of the original information, ensuring 
that critical temporal and source-specific patterns are preserved. 
Consequently, it improves computational efficiency and enhances 
the performance of learning algorithms by accelerating the training 
process and reducing the risk of overfitting, while interpretability is 
maintained since PCA components are linear combinations of the 
original features.

Upon the completion of the preprocessing phase, which included 
normalization and dimensionality reduction through principal com-
ponent extraction, the dataset was suitably prepared for DL model 
development. The input data, consisting of the scaled and reduced 
feature matrix and the associated target values, satisfies the require-
ments for efficient and stable model training, offering a clean, consis-
tent, and analytically tractable representation of the original dataset.

D. Long Short-Term Memory and Transformer Networks
Long Short-Term Memory networks are an advanced structure 
designed to overcome the core issues faced by traditional Recurrent 
Neural Networks (RNNs), such as vanishing and exploding gradients, 
which hinder learning long-term dependencies. Due to this robust 
architecture, LSTM models are highly effective in time-sensitive 
applications such as time series analysis, language modeling, speech 
recognition, and network-based intrusion detection systems. The 
LSTM cells consist of specialized units that transmit and regulate 
information over time steps. Each cell contains three key gates: the 
forget gate, the input gate, and the output gate. These gates are 
responsible for updating the cell state and hidden state [34].

The forget gate first determines which parts of the previous cell state 
should be retained or discarded. This process is carried out using a 
sigmoid activation function, as represented in (4).

	 � � �t x 1 xÃ W� � � �� ����. ,z u bt t � (4)

Here, zt−1 is the previous time step’s cell output, ut is the input vector 
at the current time step, Wxϕ is the weight matrix, and bxϕ is the bias 
term. The sigmoid function, σ, outputs values between 0 and 1, deter-
mining how much of the previous information should be forgotten. 
The second step involves the input gate, which controls how much 
new information will be added to the cell. This process consists of 
two parts. First, the gate (lt) which determines what information will 
be updated is computed using the sigmoid function, as shown in (5).

	 lt W z u bx t t� �� ���� ��l 1 xl. , � (5)

Next, a candidate information vector (Ψt) is is created using the 
hyperbolic tangent function, as in (6).

	 �t x t tW z u b� �� ���� ��tanh . ,È 1 xÈ � (6)

The updated cell state Ψt is obtained by combining the forget gate’s 
impact on past information and the input gate’s impact on new infor-
mation. This process is represented in (7).

	 � � �t t t tl� ���t 1� � � (7)

Here, ⊙ denotes the Hadamard product (element-wise multiplica-
tion). The cell updates its state by considering both past and new 
information. Finally, the output gate ωt determines which portion of 
the current cell state will be output. This gate is defined by a sigmoid 
function, as shown in (8).

	 É Ã É 1 xÉt x t tW z u b� �� ���� ��. , � (8)

Based on this value, the cell output (zt) is calculated using (9).

	 zt t t� � �É tanh� � � (9)

This series of steps allows the LSTM cell to selectively remember 
and forget information, thus enabling effective learning of temporal 
dependencies [34-36].

The Transformer architecture, in contrast, was designed to address 
the limitations of traditional sequence-based models by overcom-
ing the constraints of sequential data processing and improving the 
handling of long-range dependencies. Unlike RNNs, the Transformer 
does not rely on sequential processing and instead processes the 
entire input simultaneously, allowing for efficient parallelization [37, 
38]. The core component of the Transformer is the self-attention 
mechanism, which enables the model to evaluate the importance of 
each input token relative to others, regardless of their position in the 
sequence. This mechanism enables the model to capture both local 
and global dependencies efficiently without the need for sequential 
data flow. The Transformer consists of two main components: the 
encoder and the decoder. The encoder processes the input sequence 
and generates a representation of the data, while the decoder uses 
this representation to produce the output sequence. Both the 
encoder and decoder utilize multiple layers of attention mechanisms 
and feed-forward neural networks, allowing the model to focus on 
various parts of the input sequence at each decoding step. A key 
feature of the Transformer is its use of scaled dot-product atten-
tion, which calculates similarity scores between query and key vec-
tors and applies the softmax function to compute attention weights. 
These weights adjust the importance of corresponding value vec-
tors, enabling the model to focus on the most relevant parts of the 
sequence. Additionally, multi-head attention is employed to apply 
attention mechanisms in parallel across multiple subspaces, which 
enhances the model’s ability to capture diverse relationships in the 
data [39, 40].

In the proposed study, the Optuna method was used for hyper-
parameter selection [41]. Optuna is an open-source optimiza-
tion framework that utilizes Bayesian optimization techniques to 
efficiently search for optimal hyperparameters. By leveraging this 
approach, the model’s hyperparameters are selected based on their 
impact on the model's performance, ensuring more accurate and 
efficient results [41-43]. Approximately 10% of the earliest dataset 
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observations were temporarily set aside as a validation subset to 
prevent any future data leakage during hyperparameter tuning. The 
obtained hyperparameter values are as shown in Table II.

As seen in Table II, the model begins with sequential layers composed 
of LSTM cells, incorporating three LSTM blocks with 128, 64, and 32 
units, respectively. These layers are designed to capture hierarchical 
temporal dependencies in the sequential data. The outputs of the 
LSTM blocks are first passed through a max pooling layer and then 
fed into the multi-head self-attention layer. This combination allows 
the model to integrate hierarchical temporal features captured by 
LSTM with long-range dependencies captured by the Transformer. 
This attention layer comprises 4 heads with a key dimension of 32, 
allowing the model to attend to multiple aspects of the sequence in 
parallel. The attention outputs are then passed through dense lay-
ers configured with 64 units and a dropout rate of 0.2. The ReLU 
activation function [44] is used in the dense layers to introduce non-
linearity, thereby enhancing the model’s capacity to learn complex 
patterns. Finally, the learned feature representation is fed into the 
output layer, which employs a linear activation function for the pre-
diction task. During training, the model is optimized using the Adam 
optimizer with a learning rate of 0.001 and a batch size of 64. The 
mean squared error (MSE) [45] is used as the loss function, aiming to 
minimize the difference between predicted and true values through-
out the training process.

IV.RESULTS
The performance of the proposed forecasting model was assessed 
using a real-world time series dataset on electricity generation. 
Given the sequential nature of time series data, it was critical to 

preserve the temporal order during the validation phase. For this 
reason, a time-aware cross-validation approach was adopted. In 
particular, the time-series split method from the scikit-learn library 
[46] was utilized. This method is specifically designed for time series 
problems and differs from standard k-fold cross-validation by avoid-
ing data leakage from future to past.

For hyperparameter optimization using Optuna, a small subset cor-
responding to approximately 10% of the earliest observations in the 
dataset was temporarily set aside. This subset was used exclusively 
to select the optimal hyperparameters while ensuring no future data 
was exposed to the model. After tuning, the model was retrained 
using the remaining data for final evaluation.

The remainder of the dataset was then divided into five sequential 
folds for time-series cross-validation. In each fold, the training set 
was progressively expanded to include more historical data, while 
the test set always consisted of subsequent, unseen observations. 
This structure ensures that the model is trained on past data and 
evaluated on future data, mimicking a real-world forecasting sce-
nario. The time-series split thereby maintains the chronological 
integrity of the data and provides a realistic estimate of the model's 
generalization performance in temporal tasks.

The development of the proposed model was performed using the 
Python programming language. For implementing the DL archi-
tecture, the TensorFlow 2.18 library was utilized, while data pre-
processing was carried out with the aid of Pandas, NumPy, and 
scikit-learn libraries. Visualization tasks were executed using the 
Matplotlib library. The experiments were carried out on a desktop 

TABLE II. 
SELECTED HYPERPARAMETERS FOR THE PROPOSED MODEL

Layer/Module Hyperparameter Range/Values Selected Value

LSTM layers lstm_units [32, 64, 128, 256] 128

lstm_units [32, 64, 128, 256] 64

lstm_units [32, 64, 128, 256] 32

lstm_dropout [0.1, 0.5] 0.2

Pooling pooling_type [“max”, “average”] “max”

Multi-head attention num_heads [2, 8] 4

key_dim [16, 64] 32

Dense layers dense_units [32, 64, 128] 64

dense_dropout [0.1, 0.5] 0.2

activation_function [“relu”, “tanh”, “gelu”] “relu”

Training parameters learning_rate [1e-5, 1e-2] 0.001

batch_size [32, 128] 64

optimizer [“adam”, “rmsprop”, “nadam”] “adam”

Loss function loss [“mse”, “mae”, “huber”] “mse”
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computer equipped with an Intel® Core™ i7-10700K CPU @ 3.80 
GHz, 32 GB of RAM, and an NVIDIA GeForce RTX 3060 graphics 
processing unit. The training duration varied depending on the 
prediction horizon and dataset size; during the time-series split 
cross-validation experiments, the model predicting 1 hour ahead 
(horizon = 1) completed training in approximately 27 minutes, 
whereas the model predicting 1 day ahead (horizon = 24) required 
approximately 91 minutes.

The evaluation of the proposed model’s performance is conducted 
using three key metrics: Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), and the Coefficient of Determination (R2) [47]. 
The MAE measures the average magnitude of errors in the predicted 
values, RMSE penalizes larger errors by squaring the differences 
between predicted and actual values, and R2 indicates the propor-
tion of variance in the actual data that is captured by the model, with 
values closer to 1 indicating a better fit.

A. One-Hour Ahead Electricity Generation Forecasting
The 1-hour ahead electricity generation forecasting results are sum-
marized in Table III and illustrated in Fig. 1. Using five-fold time-series 
cross-validation, the model achieved an average MAE of 589.50 
(1.67%), RMSE of 762.41 (2.15%), and R2 of 0.98017, demonstrating 
high accuracy and robustness.

As shown in Fig. 1 and Table III, predicted values closely follow actual 
generation, effectively capturing short-term temporal patterns.

B. One-Day Ahead Electricity Generation Forecasting
The forecasting performance for the 1-day ahead horizon is pre-
sented in Table IV and visualized in Fig. 2. The model achieved an 
average MAE of 1328.24 (3.75%), RMSE of 1908.74 (5.39%), and R2 
of 0.87813.

As shown in Table IV, Fold 3 yielded the strongest results across all 
metrics, whereas Fold 5 recorded higher errors, likely reflecting local 
anomalies in the data. Compared to the 1-hour horizon, perfor-
mance is lower as expected due to increased uncertainty in longer-
term forecasts.

As illustrated in Fig. 2, the model effectively tracks the overall trend 
of actual electricity generation, with only minor deviations around 
sharp peaks and troughs. The close alignment highlights the architec-
ture’s ability to capture seasonal and periodic patterns, supported by 
the attention and temporal pooling mechanisms that enhance long-
range dependency modeling.

These metrics indicate that the model shows high performance 
for both 1-hour and 1-day ahead electricity generation forecasting 
tasks, with high accuracy for short-term predictions and satisfactory 
performance for longer-term forecasts. The 1-hour ahead forecast 
achieves an impressive R2 of 0.98017, indicating excellent predic-
tive accuracy, while the 1-day ahead forecast, with an R2 of 0.87813, 
shows good performance, albeit with some increased error due to 
the complexity of predicting over longer time spans.

In this study, we conducted a comprehensive evaluation of the 
proposed LSTM-Transformer hybrid model along with its individual 

TABLE III. 
PERFORMANCE METRICS OF THE MODEL FOR 1-HOUR AHEAD 

ELECTRICITY GENERATION FORECASTING

Fold No. MAE
MAE 
(%)a RMSE

RMSE 
(%)a R2

Fold 1 683.95 1.93 886.95 2.51 0.97351

Fold 2 492.68 1.39 635.46 1.80 0.98440

Fold 3 442.27 1.25 578.74 1.64 0.98676

Fold 4 476.40 1.35 617.77 1.75 0.98758

Fold 5 852.21 2.41 1093.14 3.09 0.96860

Average 589.50 1.67 762.41 2.15 0.98017
aPercentages relative to average generation (35381.73 MWh).

Fig. 1. Forecasting results of the 1-hour ahead electricity generation 
model.

Fig. 2. Forecasting results of the 1-day ahead electricity generation 
model.
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components (standalone LSTM and Transformer models). The 
comparative results for 1-hour ahead forecasts are presented in 
Table V.

As shown in Table V, the proposed model achieves the lowest MAE 
and RMSE values and the highest R2 scores. In contrast, the stand-
alone LSTM and Transformer models exhibit higher error rates, 
particularly in daily predictions, indicating the superior predictive 
performance of the hybrid approach.

Additionally, this study provides a detailed examination of perfor-
mance variations across different energy sources, as illustrated in 
Table VI. Only those with MAE (%) or RMSE (%) above 0.3, indicating 
significant impact on total generation error, are included. As shown 
in Table VI, short-term (1-hour ahead) forecasts exhibit notably low 
error rates for intermittent renewable sources such as wind and solar, 
indicating the model’s effectiveness in capturing their short-term 
fluctuations. In contrast, fossil fuel-based sources like natural gas and 
imported coal display moderately higher error rates. Hydroelectric 
generation records the highest error among renewables, which is 
likely attributable to operational scheduling and water management 
practices that introduce variability independent of weather condi-
tions, thereby increasing forecasting complexity.

The proposed model combines high forecasting accuracy with practi-
cal applications. In grid management, it supports real-time balanc-
ing of renewable fluctuations, optimizes hydropower releases, and 

plans reserve capacity. In market regulation, it enables day-ahead 
price forecasting, bidding strategy optimization, and early detection 
of abnormal price patterns. In policy-making, it aids capacity mecha-
nism design, evaluation of renewable integration scenarios, and pri-
oritization of infrastructure investments. The model’s low inference 
time makes real-time deployment feasible, while the complexity of 
training favors offline execution.

While the case study focuses on Türkiye, the proposed framework 
is adaptable to other emerging economies with comparable energy 
system characteristics. Its transferability depends on factors such as 
the diversity of the energy mix, grid stability, and the availability of 
high-resolution operational data, which should be considered when 
applying the model in different national contexts.

V. CONCLUSION
The increasing complexity of modern energy systems, driven by the 
diversification of generation sources and the growing integration 
of renewables, has underscored the necessity for accurate short-
term electricity generation forecasting. In response to this criti-
cal demand, the present study has demonstrated the efficacy of 
a DL-based forecasting framework that combines LSTM networks 
with a multi-head self-attention mechanism and robust regulariza-
tion strategies. The proposed architecture effectively captures both 
short- and long-range temporal dependencies inherent in electric-
ity generation time series, thereby enhancing predictive precision. 
Empirical evaluations conducted on one-hour ahead forecasting 
tasks revealed that the model consistently achieves high predic-
tive performance, with an average MAE of 589.50 (1.67%), RMSE 
of 762.41 (2.15%), and R2 of 0.98017 across five-fold cross-valida-
tion. These results indicate the model’s robustness in capturing 
short-term fluctuations and daily-seasonal trends in electricity 
generation. Visual analyses further corroborate these findings by 
illustrating a strong alignment between predicted and actual gener-
ation values. For the one-day ahead forecasting horizon, the model 
attained an average MAE of 1328.24 (3.75%), RMSE of 1908.74 
(5.39%), and R2 of 0.87813. While a slight decline in accuracy was 
observed due to the inherent uncertainty in long-term predictions, 
the model maintained a satisfactory level of performance, demon-
strating its potential applicability for medium-range planning tasks. 
Overall, the findings of this study affirm the model’s capability to 
address the forecasting challenges posed by dynamic, multi-source 

TABLE IV. 
PERFORMANCE METRICS OF THE MODEL FOR 1-DAY AHEAD 

ELECTRICITY GENERATION FORECASTING

Fold No. MAE
MAE 
(%)b RMSE

RMSE 
(%)a R2

Fold 1 1480.95 4.18 2077.07 5.87 0.85545

Fold 2 1106.87 3.13 1637.75 4.63 0.89629

Fold 3 1112.20 3.14 1567.99 4.43 0.90281

Fold 4 1257.61 3.55 1820.28 5.14 0.89236

Fold 5 1683.56 4.76 2440.61 6.90 0.84376

Average 1328.24 3.75 1908.74 5.39 0.87813
aPercentages relative to average generation (35381.73 MWh).

TABLE V. 
MODEL PERFORMANCE COMPARISON

Model MAE
MAE 
(%)a RMSE

RMSE 
(%)a R2

Proposed model 589.50 1.67 762.41 2.16 0.98017

Only LSTM 601.01 1.70 773.21 2.19 0.97935

Only transformer 666.60 1.88 856.33 2.42 0.97513
aPercentages relative to average generation (35381.73 MWh).

TABLE VI. 
1-HOUR AHEAD FORECAST PERFORMANCE BY ENERGY SOURCE

Energy Source MAE
MAE 
(%)a RMSE

RMSE 
(%)a R2

Natural gas 372.55 1.05 493.01 1.39 0.983

Hydroelectric 421.77 1.19 552.98 1.56 0.959

Imported coal 170.79 0.48 253.24 0.72 0.980

Wind 130.79 0.37 169.77 0.48 0.993

Solar 46.58 0.13 73.05 0.31 0.931
aPercentages relative to average generation (35381.73 MWh).
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energy systems such as that of Türkiye. The model presents a prom-
ising tool for enhancing operational decision-making, ensuring 
supply-demand equilibrium, and supporting strategic planning in 
energy markets. Its integration into real-time monitoring and dis-
patch systems could significantly contribute to the resilience and 
stability of power systems, particularly in regions with high renew-
able energy penetration.

Future work could explore the incorporation of exogenous variables 
such as meteorological conditions, market dynamics, and demand-
side behavior to further enhance forecasting accuracy. Additionally, 
adapting the model for real-time deployment and evaluating its 
performance under different seasonal or system stress scenarios 
would offer valuable insights for large-scale, data-driven energy 
management.
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