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ABSTRACT

Solar energy plays a pivotal role in renewable energy systems; however, dust accumulation on photovoltaic panels substantially reduces energy production effi-
ciency. Manual cleaning methods at large-scale plants are costly and impractical, highlighting the need for automated detection techniques. This study presents
a novel image processing and deep learning-based approach to accurately detect dusty PV panels. Images underwent preprocessing, including Hue, Saturation,
Value color space conversion, and morphological operations to precisely segment dust-affected regions. Individual performances of DenseNet169, Xception,
and InceptionV3 models were evaluated, and an ensemble model—Deep Solar Ensemble—was developed via soft voting. Experimental results demonstrated
that the proposed ensemble achieved a superior classification accuracy of 97.02%, a precision of 97.29%, a recall of 96.56%, and an F1 score of 96.92% on a
binary classification task. To address real-world applicability and robustness, the study was extended to include comparisons with lightweight architectures
and testing on a more diverse, multi-class dataset containing various fault types, where the ensemble continued to show robust performance. The proposed
methodology offers significant potential for automating solar panel maintenance, thereby enhancing operational efficiency, while also considering the trade-

offs between accuracy and computational cost for practical deployment.

Index Terms—DenseNet, dust classification, ensemble learning, InceptionV3, photovoltaic panel, Xception

I.INTRODUCTION

In the contemporary world, energy has become a critical necessity
due to the growing human population, industrial competition, and
the continuous advancement of technology. Energy constitutes a
cornerstone of both societal and individual life. It is indispensable
for the continuity of industry, agriculture, transportation, technol-
ogy, and daily household activities. However, approximately 80%
of the energy currently utilized is still derived from fossil fuels.
The formation of fossil fuels through geological processes span-
ning millions of years results in their limited reserves. Factors such
as finite reserves and the environmental harm caused by their use
render fossil fuels unsustainable energy options [1, 2]. The esca-
lating environmental degradation and the consequent issue of cli-
mate change have compelled humanity to seek alternative energy
sources. Consequently, there has been a shift toward renewable
energy sources. Solar, wind, hydroelectric, and geothermal energy
sources are advancing and gaining prominence in the energy sector.
Among these, solar energy is one of the most frequently preferred
energy sources. Despite its significant position among sustainable
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energy sources, the effective utilization of solar panels faces certain
challenges. In particular, the accumulation of dust and dirt reduces
the capacity of photovoltaic (PV) cells to absorb sunlight, thereby
decreasing energy efficiency. Additionally, determining the optimal
timing for solar panel maintenance enhances energy production effi-
ciency and extends the lifespan of the panels. Onim and colleagues
developed the SolNet model, which employs a deep learning-based
approach for the early detection of dust accumulation. Utilizing a
Convolutional Neural Network (CNN) architecture, the SolNet model
detects dust levels on solar panel images, offering recommendations
that could increase panel efficiency by 15% [3]. Malik and colleagues
[4] implemented an Arduino-based system for the automatic detec-
tion of dust accumulation and cloud-based reporting. This system
analyzes data from dust sensors to automatically assess the cleanli-
ness of panels, reducing energy production losses by 25%. Abugaaud
and Ferrah [5] developed an innovative sensor-based approach to
detect dust and soil on solar panels. This method, employing opti-
cal sensors, achieved 90% accuracy in detecting dust accumulation,
significantly reducing efficiency losses. Saquib and colleagues [6]

Received: June 10, 2025

Revision Requested: June 23, 2025
Last Revision Received: July 7, 2025
Accepted: August 5, 2025
Publication Date: November 17, 2025


http://orcid.org/0009-0001-8539-8083
http://orcid.org/0009-0006-4789-6029
http://orcid.org/0000-0002-5140-1213
http://orcid.org/0000-0003-3051-4259
mailto:mustafaerten@kku.edu.tr

TEPES [epub ahead of print], 2025
Balci et al. An Ensemble-Based Deep Learning Framework for Efficient Soiling Detection on Photovoltaic Panels

utilized image processing and artificial neural networks (ANNs) to
detect dust accumulation and predict energy production. Their study
classified dust density on panels with 88% accuracy and estimated
annual energy losses at 20%. Keerthana and colleagues [7] proposed
an effective model for the early detection of dust accumulation using
image processing techniques. Employing methods such as histogram
equalization and edge detection, this model achieved 85% accu-
racy. Abukhait [8] developed a computer vision-based approach to
enable more precise detection of dust accumulation. This approach
utilized transfer learning with the ResNet50 model to analyze dust
levels, achieving 92% accuracy. Kavya and Keshav [9] proposed a
low-cost system for dust detection, offering an optical sensor-based
solution that reduced energy losses by 30%. Alatwi and colleagues
[10] presented an effective solution for sustainable energy produc-
tion using deep learning techniques. Their study achieved 86.79%
accuracy with the DenseNet169 model, with further improvements
through integration with a Support Vector Machine (SVM). In con-
trast to these studies, the present work preprocessed solar panel
images using image processing techniques to segment dusty areas
and employed various deep learning models. The preprocessing
steps include Hue, Saturation, Value (HSV) color space transforma-
tion and morphological operations to ensure precise detection of
dusty regions. The performance of DenseNetl169, Xception, and
InceptionV3 models was evaluated individually, and these models
were combined using an ensemble method to propose the Deep
Solar Ensemble model. Experimental results demonstrated that the
DenseNet169 model achieved 96.12% accuracy, the Xception model
91.67% accuracy, and the InceptionV3 model 94.64% accuracy, while
the Deep Solar Ensemble model exhibited the highest performance
with 97.02% accuracy, 97.29% precision, 96.56% recall, and 96.92%
F1 score. To further assess the model’s real-world viability, this work
also evaluates its robustness on a challenging multi-class dataset

Main Points

e Introduction of Deep Solar Snsemble: A novel ensemble
model combining DenseNet169, Xception, and InceptionV3
enhances dust detection on solar panels.

e Superior performance metrics: The Deep Solar Ensemble
achieves high accuracy (97.02%), surpassing individual deep
learning models.

e Advanced image preprocessing: Hue, Saturation, Value color
space transformation and morphological operations improve
the segmentation of dusty regions.

e Robustness validation on a multi-class dataset: The frame-
work’s effectiveness was further tested on a diverse dataset
with six fault classes (e.g., dust, snow, physical damage),
demonstrating its robustness in more complex, real-world
scenarios.

e  Comparative analysis for practical deployment: A compari-
son with lightweight models like MobileNet was conducted
to analyze the critical trade-off between classification accu-
racy and computational efficiency for real-time applications.

e Practical application: The model enables efficient solar
panel maintenance, reducing energy losses due to dust
accumulation.

and compares its performance against lightweight architectures,
addressing the critical trade-off between accuracy and computa-
tional efficiency. These results indicate that the image processing
and ensemble approach surpasses the performance of individual
models, offering a higher success rate in detecting dust accumula-
tion on solar panels.

Il. METHODS

This study utilized two distinct datasets. The first dataset, sourced
from a publicly available repository on Kaggle, comprises solar panel
images categorized into two classes: clean and dirty. This dataset
contains images specifically curated for binary classification tasks to
distinguish between clean and dusty solar panels, capturing various
environmental conditions and dust accumulation levels. The second
dataset was introduced to address a more complex, multi-class clas-
sification problem. Its objective is to detect a wider range of surface
anomalies, containing six classes: Clean (194 images), Dusty (191
images), Bird-drop (192 images), Electrical-damage (104 images),
Physical-Damage (70 images), and Snow-Covered (124 images). Both
datasets include a balanced collection of images, with approximately
equal representation across classes, ensuring robust training and
evaluation of classification models. The distribution of images in the
datasets is illustrated in Fig. 1. Multiple deep learning models were
employed to assess their performance. To address potential class
imbalances, the weighted class balancing method was applied to
ensure equitable representation of all classes in both datasets. The
balanced datasets were subjected to preprocessing steps, including
image resizing and normalization techniques to standardize input
dimensions and pixel intensities for model training. Additionally,
to enhance the detection of dusty regions, image processing tech-
niques were applied, involving HSV color space transformation to
emphasize dust-related color and brightness variations, followed by
morphological operations to refine the segmentation of dusty areas.
The preprocessed datasets were used to train the DenseNet169,
InceptionV3, and Xception image classification algorithms. The
trained models were combined using ensemble learning to form
the Deep Solar Ensemble Learning model. The soft voting method

Dataset ratio

Dusty
1069 (41.73%)

Clean
1493 (58.27%)

Fig. 1. First dataset ratio.
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was adopted as the ensemble learning technique, and the perfor-
mance of the ensemble model was evaluated on the test datasets.
Furthermore, for a comprehensive comparison, the MobileNet and
VGG19 models were also trained and evaluated on the same datas-
ets. These models were not included in the ensemble but served as
benchmarks to gauge the performance of the primary models. The
general workflow of this study is summarized in Fig. 2. Performance
evaluation metrics, including Accuracy, Recall, Precision, and F1
score, were employed to assess the individual classifiers, the com-
parison models, and the ensemble model. The results were analyzed
to elucidate the advantages provided by the ensemble learning mod-
els and other classifiers.

A. Image Preprocessing

The dataset was subjected to preprocessing steps to standard-
ize input dimensions and enhance the detection of dusty regions.
These steps included image resizing and normalization techniques to
ensure consistent pixel intensities and input dimensions for model
training. Images were resized to a resolution of 224 x 224 pixels to
align with the requirements of deep learning models, and pixel inten-
sities were normalized to the range [0, 1]. A representative clean
solar panel image from the dataset is shown in Fig. 3. To address
potential class imbalances, the weighted class balancing method was
applied to ensure equitable representation of clean and dirty panel
images during model training. This method assigns higher weights
to underrepresented classes in the loss function, thereby mitigating
bias toward the majority class and improving model performance
on minority classes. Additionally, a series of image processing tech-
niques was applied to highlight color and brightness variations asso-
ciated with dust and to improve the segmentation of dusty areas.
Images were initially converted from Blue, Green, Red (BGR) to HSV
color space, as the HSV color space better distinguishes the color

DENSENET169

and brightness characteristics of dust. For the detection of dusty
areas, a color range was defined in the HSV space with a lower bound
of [H=0, S=0, V=100] and an upper bound of [H=180, S=50,
V =200], and a binary mask was generated for pixels falling within
this range. This mask designates pixels representing dusty regions
as white (255) and others as black (0). To enhance the accuracy of
the mask, morphological operations were applied; a 5 x 5 square
kernel was used to perform an opening operation (morphological
opening), which eliminated small noise artifacts. Subsequently, a
closing operation (morphological closing) with the same kernel was
applied to fill small gaps within dusty regions. For visualization of
dusty areas, the masked regions were highlighted in red (BGR: [0, O,
255]) and overlaid onto the original image with a transparency factor
of 0.5. The effectiveness of these preprocessing steps in segmenting
dusty regions is illustrated with dirty solar panel images and their
processed states in Fig. 4. These preprocessing steps enabled precise
segmentation of dusty regions, thereby enhancing the classification
performance of deep learning models.

Fig. 4 is a visualization of the dirty solar panel image (left) and the
resulting image after applying the preprocessing (right). The dusty
regions, determined through the above HSV color space conversion,
morphological processes, and mask procedures, are highlighted in
red and overlaid on the original image for the model to more easily
recognize the regions.

B. Densenet169

DenseNet169 is a variation of the DenseNet (Densely Connected
Convolutional Networks) architecture, which is a noteworthy con-
tribution to the CNN community. Architecturally, DenseNet169 has
169 layers and accepts 224 x 224 pixel RGB images as input. This
is followed by convolution and pooling layers, four dense blocks,
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Fig. 2. Workflow of study.




TEPES [epub ahead of print], 2025
Balci et al. An Ensemble-Based Deep Learning Framework for Efficient Soiling Detection on Photovoltaic Panels

Fig. 3. Clean solar panel.

and three transition layers, decreasing dimensionality between
the blocks. Then the classification is accomplished through global
average pooling, a fully connected layer, and a Softmax activation
function. The DenseNet169 architecture is illustrated in Fig. 5. The
most important feature of DenseNet169 is that each layer takes
the output of the previous layers as input. This dense connection
pattern has two significant advantages: First, it is parameter-effi-
cient since the feature maps are recycled throughout the network.
Second, it improves the gradient flow, which essentially dimin-
ishes the vanishing gradient problem that is common in deep
networks. These features are what make DenseNet169 highly
effective at discovering irregular and fine-grained patterns such as
dust, dirt, or damage on solar panels. Its ability to learn complex
features with fewer parameters allows it to detect surface defects
with high accuracy. Therefore, DenseNet169 was selected as part
of the base ensemble due to these inherent architectural advan-
tages [11-13].

C. Xception

Xception is a CNN architecture designed by Frangois Chollet, which
builds upon the concepts of the Inception model by using more effi-
cient depthwise separable convolutions. The Xception architecture

Solar Panel Dataset

consists of 71 layers in 14 modules with approximately 23 million
parameters. It consumes 224 x 224 pixel Red, Green, Blue (RGB)
input images, which are fed into 36 depthwise separable convolu-
tional layers. Max pooling or strided convolutions are used between
modules to downsample the feature map. The architecture con-
cludes with global average pooling and a fully connected layer for
classification. The Xception architecture is depicted in Fig. 6. The
two building blocks of the model are the depthwise separable
convolutions, which decompose an ordinary convolution into two
operations: a depthwise operation where one filter convolves all
the input channels, and a pointwise operation (a 1 x 1 convolution)
that adds the outputs. This design is particularly helpful because it
allows the model to learn high-level spatial hierarchies from panel
images—encoding features from low-level edges to complex anom-
aly shapes—using many fewer parameters. This equates to faster
training and inference speeds without a noticeable decrease in per-
formance. Xception was added to the ensemble to take advantage
of its newer and highly optimized architecture, providing a strong
yet computationally light method. Its design philosophy enables a
different and complementary feature extraction approach compared
to DenseNet, which was the primary reason for its inclusion in the
framework [14-16].

D. InceptionV3

InceptionV3 is a CNN architecture introduced by Christian Szegedy
et al., with a focus on creating a deeper and wider network. Its core
building blocks are Inception modules, where parallel convolution
and pooling operations of different sizes (e.g., 1 x 1,3 x 3,5 x 5) are
executed and combined. One of the innovations of the InceptionV3
architecture is the factorization of larger convolutions—for instance,
replacing a 7 x 7 convolution with two consecutive 3 x 3 convolu-
tions—to reduce computational cost while maintaining a large
receptive field. The model consists of 48 layers and approximately
24 million parameters and accepts RGB images of 224 x 224 pixels
as input. These design choices allow the network to learn effectively
across multiple scales and dimensions, improving both performance
and efficiency. The architecture of InceptionV3 is shown in Fig. 7.
This two-stream, multi-scale processing approach is particularly
effective for this task, as defects on solar panels can vary signifi-
cantly in size—from tiny bird droppings and minute cracks to large
clumps of snow or dust. The ability of InceptionV3 to detect both

Pre-Processing

Fig. 4. Dirty solar panel and its processed state.
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fine-grained and coarse features simultaneously makes the over-
all ensemble more versatile and robust in identifying a wide range
of anomalies. InceptionV3 was chosen as the third member of the
ensemble to introduce this multi-scale processing capability, offer-
ing a complementary perspective to DenseNet’s feature reuse and
Xception’s computational efficiency [17-19].
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E. Ensemble Learning

Ensemble learning is a powerful approach widely used in machine
learning and deep learning. This method aims to combine the pre-
dictions of multiple models to surpass the performance of a single
model. Ensemble learning is based on the idea that the errors of
different models will decrease on average, and thus the model will
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Fig. 6. Structure of Xception [14].
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have higher performance, lower variance, and better generalization
ability. These methods can include various machine learning and
deep learning models. The main advantage of this approach is that
the error of one model can be compensated for other models. In this
way, problems such as overfitting and underfitting can be overcome.
Ensemble learning reduces the negative impact of such errors by
using more than one model to prevent artificial intelligence models
from overfitting the variables in the data set and reducing the gen-
eralization ability. Ensemble learning methods also have some dis-
advantages. These methods can be complex, and this can make the
model difficult to manage and understand. Furthermore, the com-
putational power, cost, and time required to train multiple models
and to build the final prediction model are some of the major disad-
vantages of ensemble learning models [20, 21].

F. Soft Voting

Soft voting, one of the ensemble learning methods, is a technique
that aims to obtain a final prediction by combining the probability
estimates of multiple models. Each model estimates the probability
of belonging to a class. Then, the probability estimates of all models
are summed and averaged on a class basis. The class with the high-
est average probability is selected as the final prediction. The effec-
tiveness of soft voting depends on the diversity and quality of the
models in the ensemble. The use of different algorithms and hyper-
parameters can improve the performance of soft voting [22-25]. The
formula of the soft-voting method is given in (1).

e

Ym :argmaXZPj (y:jlxm).wj (1)
=1

- Y..: The sequence number of the class predicted by the ensem-
ble model.

- argmax: It is the process by which the index corresponding to
the highest value of a function is determined.

- P(y=jlx,):Itis the probability value expressing the probability
that the sample xm belongs to the jth class.

- j: Indicates the sequence number of each model or unit in the
community model.

- w;j. represents the additive weight of the unit or model.

G. Deep Solar Ensemble Learning

The Deep Solar Ensemble Learning model was developed on the
principle that a collection or ensemble of predictions from structur-
ally diverse models leads to a more robust and precise classifier than
any single one of them. The model was developed to detect dust
accumulation and other surface anomalies on solar panels with high
precision. The model strategically integrates the three above algo-
rithms to benefit from their complementary strengths:

e DenseNetl69 provides deep feature extraction with effective
feature reuse.

e  Xception provides a computationally lightweight and effective
perspective with its depthwise separable convolutions.

* InceptionV3 provides the necessary multi-scale analysis for
anomaly detection at varying sizes.

These three models were trained individually and then combined
into an ensemble using the soft voting method. In this approach,
the final prediction is made by averaging the probability scores of
all the models, in a way that allows the models to ‘vote’ with their
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confidence levels. This process prevents the risk of misclassifica-
tion because of a certain weakness of any one model, leading to
improved generalization. The ensemble performed wonderfully on
the binary test data with 97.02% accuracy, 97.29% precision, 96.56%
recall, and a 96.92% F1 score. The architecture of the Deep Solar
Ensemble is illustrated in Fig. 8.

H. Performance Evaluation Metrics

It is a table used to evaluate the performance of a classification
model. This matrix summarizes the number of correct and incorrect
classifications by comparing the actual class labels with the model’s
predictions. The size of the matrix depends on the number of classes,
with rows representing actual classes and columns representing pre-
dicted classes. Cells on the diagonal of the matrix indicate the num-
ber of correct classifications. Cells off-diagonal indicate the number
of misclassifications. The confusion matrix allows the calculation of
many metrics used to evaluate the performance of the model. These
metrics include accuracy, precision, recall, and F1 score. Fig. 9 shows
an example of a confusion matrix for the classification model, illus-
trating true positive, false negative, true negative, and false positive
classifications [26-28].

- True Positive (TP): Indicates the number of instances that the
model classifies as positive and are actually positive. In other
words, these are the instances that the model correctly assigns
to the positive class.

- False Positive (FP): Indicates the number of instances that the
model classifies as positive but is actually negative. These are
negative samples that the model incorrectly includes in the
positive class.

- True Negative (TN): Represents the number of instances that
the model classifies as negative but are actually negative. In
other words, these are the samples that the model correctly
assigned to the negative class.

- False Negative (FN): Represents the number of instances that
the model classifies as negative but are actually positive. This
is the number of positive instances that the model incorrectly
includes in the negative class.

1) Accuracy:

Accuracy is a metric that measures the proportion of correct pre-
dictions of a classification model. It is calculated as the number of
correctly classified samples divided by the total number of samples.
A high accuracy value indicates that the model has a good classifi-
cation ability. However, accuracy has some limitations. Especially in
imbalanced datasets, accuracy can give misleading results. In imbal-
anced datasets, the model may achieve a high accuracy by correctly
predicting the samples belonging to the majority class, but may not
correctly classify the samples in the minority class [27, 28]. Equation
(2) shows the accuracy metric formula.

Accuracy = _ TP+TN. (2)
TP+TN+FP+FN

2) Precision:

Precision is a metric that measures the ratio of correct positive pre-
dictions of a classification model to all positive predictions. In other
words, it shows how many of the samples that the model predicts as
positive classes are actually positive. It is important when the cost of
false positives is high. However, precision also has some limitations.
A low precision value indicates that the model predicts many false
positives. However, this does not provide information about whether
the model makes a small number of true positive predictions [27,
28]. Equation (3) shows the formula for the precision metric.

P

3
TP +FP @)

Precision =

(
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G
—

)
\> |
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Fig. 8. Deep Solar Ensemble Learning.
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3) Recall:

Recall measures the ratio of correctly classified instances of the posi-
tive class to all positive instances. In other words, it shows how well
the model can recognize the positive class. Recall plays an impor-
tant role, especially in scenarios where false negatives are impor-
tant. However, the disadvantage of recall is that it does not take into
account the false-positive predictions of the model, so it is not suf-
ficient to evaluate the accuracy of the model alone [27, 28]. Equation
(4) shows the formula for the recall metric.

TP
+FN

Recall= (4)
4) F1-Score:

The F1 score provides a balance by taking the harmonic mean of pre-
cision and recall values. In unbalanced data sets, misleading results
can be obtained when using precision or recall alone, but the F1
score provides a more consistent performance evaluation by evaluat-
ing these two metrics together. It is particularly useful when the data
set is unbalanced. By balancing both precision and recall, it provides
a fairer measure of the overall success of the classification model
[27, 28]. Equation (5) shows the formula for the F1 score metric.

F1— Score = 2* Precision* Recall (5)
Precision + Recall

111. RESULTS
In this study, a dataset of dirty and clean solar panel images obtained
from Kaggle was used to classify solar panels, and a second dataset
was used for comparison. In the pre-processing stage, the data were
normalized to a 224 x 224 pixel size in the range of [0,1] and con-
verted from BGR to HSV color space. In addition, dusty areas were
masked according to the color range determined in the HSV space,
and these masks were improved with morphological opening/clos-
ing operations. After these steps, the weighted class method was
applied to balance the classes, followed by separate training with
DenseNet169, InceptionV3, and Xception algorithms. These trained
models were combined using the soft voting method, an ensemble
learning method, to create an ensemble learning model. For com-
parison with lightweight CNN models, the MobileNet and VGG19

models were also trained separately with both datasets. The training
results of each model and the ensemble model were analyzed and
compared one by one. The dataset was divided into 80% for train-
ing and 20% for testing, respectively, and an early stopping func-
tion was used to prevent overfitting. The prediction performance of
each classifier was calculated with accuracy, precision, recall, and F1
score metrics. The outputs and findings of the models are presented
below.

Table | summarizes the training hyperparameters used for the
three compared deep learning models (Xception, InceptionV3,
DenseNet169). To ensure a fair comparison, all models were trained
with largely common settings such as 100 epochs, a batch size of 32,
the Adam optimizer, a 0.2 dropout rate, and the Categorical Cross-
Entropy loss function. To improve model performance, different
learning rates specifically optimized for each network architecture
were chosen.

TABLE I.
PARAMETERS OF DEEP LEARNING ALGORITHMS

Model Xception InceptionV3 DenseNet169

Epochs 100 100 100

Batch size 32 32 32

Optimizer Adam Adam Adam

Learning 0,000025 0,000006 0,000003

rate

Units 400 400 400

Dropout 0.2 0.2 0.2

Activation ReLU (Dense), RelLU (Dense), ReLU (Dense),

functions Softmax (Output) Softmax (Output) Softmax

(Output)

Loss function Categorical Categorical Categorical

crossentropy crossentropy crossentropy
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Table Il shows that the best prediction performance is given by the
ensemble learning model. This model is followed by the DenseNet169
algorithm, which achieves the most successful results among the
individual classifiers. The Xception and InceptionV3 models, on the
other hand, showed a lower prediction performance compared to
DenseNet169 on this dataset. The MobileNet and VGG19 models,
added for comparison, showed the lowest performance. It is clearly
seen that the lightweight CNN models did not show sufficient perfor-
mance in this study. The bold values in Table Il indicate the highest
performance values among the compared models.

According to Table Ill, the most accurate prediction performance on
the second dataset is given by the Deep Solar Ensemble model. The
Xception algorithm comes second, being the best individual classi-
fier. The DenseNet169 and InceptionV3 models, however, showed
poorer prediction performance relative to Xception on this dataset.
The bold values in Table Il represent the best performance values
among the compared models.

The performance of the models during training was analyzed by
means of graphs showing the change in accuracy and loss values on
the validation dataset according to the epochs.

Fig. 10 shows the validation accuracy curves of three different mod-
els (DenseNet169, Xception, InceptionV3) over 100 epochs. As can
be seen from the graph, the verification accuracy of all models
showed a general increasing trend as the training progressed and
reached an equilibrium (plateau) over time. Comparing these curves,
DenseNet169 (blue line) performed the best among the individual
models, reaching a validation accuracy of about 96%. InceptionV3
(red line) showed the second-best accuracy at around 94-95%, while
Xception (black line) achieved a more modest result compared to the
other two models, with an accuracy of around 91-92%.

Fig. 11 shows the change in the validation loss values of the same
models according to the epochs. Consistent with the accuracy
graph, it is seen that the loss values of all models generally decrease
as the training progresses and reach a plateau after a certain point.
The model with the lowest loss value was again DenseNet169, fol-
lowed by InceptionV3, and the highest loss value was observed in
the Xception model. These graphs show that the models learn on
the validation set and their performance reaches saturation after
certain epochs. These general trends in training and validation
metrics reflect the trainability and generalization capacities of the
models.

IV. DISCUSSION

The detection of dust and dirt accumulation in solar panels is critical
to improve energy efficiency and optimize maintenance processes. In
this field, deep learning-based approaches combined with image pro-
cessing techniques have provided effective solutions. Important works
in the literature and the proposed model are summarized in Table IV.

As seen in Table IV, studies in literature have generally used deep
learning models to detect dust accumulation on solar panels. For
example, Saquib et al. [6] achieved 88% accuracy with ANN, while
Abukhait [8] achieved 92% accuracy with ResNet50. Alatwi et al. [10]
achieved 86.79% accuracy with the combination of DenseNet169
and SVM, while Varikuti et al. [29] achieved 82.63% accuracy with
EfficientNetBO and 87.32% accuracy with DenseNet121. However,
in most of these studies, the ensemble learning approach was not
adopted, and no details about the preprocessing steps were given.
This study, on the other hand, evaluated DenseNet169, Xception,
and InceptionV3 models individually, and then developed the Deep
Solar Ensemble model, achieving 97.02% accuracy. The bold values
in Table IV indicate the highest accuracy obtained across all models.
This innovation was achieved through the use of advanced prepro-
cessing techniques (HSV color space conversion and morphological
operations) and ensemble learning, providing one of the highest
accuracies in the literature and an important step in optimizing solar
panel maintenance processes.

V. CONCLUSION

In this study, the detection of dirt and dust particles that reduce
energy efficiency in solar panels is targeted using artificial intelligence
and deep learning techniques. The images in the dataset were sub-
jected to a series of preprocessing steps before being prepared for
model training; these steps include bringing the images to a standard
size (224 x 224), normalization of pixel values (range [0, 1]), conver-
sion to HSV color space for highlighting dusty areas, color threshold-
ing, and morphological operations (opening and closing). To solve
the problem, DenseNet169, InceptionV3, and Xception image clas-
sification models based on CNN architecture were trained using
these preprocessed data. In order to increase the predictive power
of these models, a new model called the Deep Solar Ensemble was
created by combining it with the soft voting method from ensemble
learning approaches. The proposed Deep Solar Ensemble model,
which combines DenseNet169, Xception, and InceptionV3, achieved
outstanding results with an accuracy of 97.02%, precision of 97.29%,
recall of 96.56%, and an F1 score of 96.92%, significantly surpassing
the performance of the individual models. This ensemble approach

TABLE Il.
METRIC RESULTS OF DEEP LEARNING ALGORITHMS ON THE FIRST DATASET

Model VGG19 MobileNet DenseNet169 Xception InceptionV3 Deep Solar Ensemble
Accuracy 0.880 0.882 0.96 0.916 0.946 0.97
Recall 0.864 0.857 0.955 0.899 0.945 0.965
Precision 0.888 0.903 0.962 0.933 0.943 0.972
F1 score 0.876 0.879 0.959 0.915 0.944 0.969




TEPES [epub ahead of print], 2025
Balci et al. An Ensemble-Based Deep Learning Framework for Efficient Soiling Detection on Photovoltaic Panels

TABLE III.
METRIC RESULTS OF DEEP LEARNING ALGORITHMS ON THE SECOND DATASET
Model VGG19 MobileNet DenseNet169 Xception InceptionV3 Deep Solar Ensemble
Accuracy 0.810 0.850 0.845 0.856 0.805 0.897
Recall 0.817 0.852 0.838 0.844 0.775 0.881
Precision 0.809 0.867 0.859 0.844 0.814 0.901
F1 score 0.813 0.859 0.843 0.838 0.780 0.886
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Fig. 10. Accuracy graph of the models.

addresses class imbalance and improves generalization capability,
highlighting its potential for real-world deployment. Nonetheless,
computational complexity and the need for real-time processing
remain practical challenges to be addressed.

The findings show that the deep solar ensemble model exhibits a
higher classification performance compared to the single models.

This result emphasizes the effectiveness and performance improve-
ment of ensemble learning methods, especially in real-world data-
sets where class imbalances are common. Therefore, it can be
predicted that this approach will be used more frequently in future
classification-based studies. Ultimately, this research is expected to
contribute to improving the energy efficiency of solar panels and
optimizing maintenance processes such as panel cleaning.
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Fig. 11. Loss graph of the models.
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TABLE IV.
LITERATURE COMPARISON TABLE

Study Model Accuracy (%) Dataset
Saquib et al. (2021) ANN 88 Special
Abukhait (2021) ResNet50 92 Special
Alatwi et al. (2022) DenseNet169 + SVM 86.79 Special
Varikuti et al. (2024) EfficientNetBO 82.63 Kaggle
Varikuti et al.(2024) DenseNet121 87.32 Kaggle
Deep Solar Ensemble  Deep solar ensemble 97.02 Kaggle

(Proposed Model)

ANN, artificial neural network; SVM, support vector machine.

This study, while with positive results, has several limitations that
should be considered in the interpretation of the results and that
offer possibilities for future research. One of the principal limita-
tions was the hardware capacity utilized for the experiments. The
model training and testing were conducted on an NVIDIA GTX 1650
graphics card, which has 4 GB of VRAM. This hardware constraint
prevented the authors from trying larger batch sizes, attempt-
ing more complex model architectures, and reducing training
times. Future work conducted with more powerful computational
resources may be able to achieve higher performance through more
extensive hyperparameter tuning and the application of deeper
models. Second, there were constraints related to the multi-class
dataset. The model’s performance on this second data was not as
spectacular as it had been on the binary data for two reasons. First,
the larger number of classes (six fault types) inherently makes the
classification task harder. Second, the relatively small number of
images in some classes, such as “Physical-Damage” and “Electrical-
damage,” caused a class imbalance that made it hard for the model
to generalize to all classes. A larger and more balanced multi-class
dataset would likely improve the model’s real-world robustness and
accuracy.

Data Availability Statement: The data that support the findings of this study
are available upon request from the corresponding author.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept — MJY.E., H.A.; Design — MJY.E.,, H.A;
Supervision — M.Y.E., H.A.; Resources — M.B., A.F.; Materials — M.B., A.F.; Data
Collection and/or Processing — M.B., A.F.; Analysis and/or Interpretation —
M.B., A.F,; Literature Search — M.B., A.F., M.Y.E.; Writing Manuscript — M.B.,
A.F., M.Y.E., H.A_; Critical Review — M.Y.E., H.A.

Declaration of Interests: The authors have no conflicts of interest to declare.

Funding: The authors declare that this study received no financial support.

REFERENCES

1. G.D. Gezgin,, "Gunes panellerinde, glines takip sistemlerinin ve panel
kirliliginin panel verimliligine etkisinin incelenmesi," M.S. thesis, Dept.
of Mechatronics Eng., Inst. of Sci., Trakya Univ., Edirne, Turkey, 2023

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

R. Aman, M. Rizwan, and A. Kumar, “Fault classification using deep
learning based model and impact of dust accumulation on solar photo-
voltaic modules,” Energy Sources A, vol. 45, no. 2, pp. 4633-4651, 2023.
[CrossRef]

M. Onim et al., “SolNet: A convolutional neural network for detecting
dust on solar panels,” Energies, vol. 15, no. 22, Art. no. 8100, 2022.

H. Malik, M. Alsabban, and S. M. Qaisar, “Arduino based automatic solar
panel dust disposition estimation and cloud based reporting,” Procedia
Comput. Sci., vol. 194, pp. 102-113, 2021. [CrossRef]

K. A. Abugaaud, and A. Ferrah, “A novel technique for detecting and
monitoring dust and soil on solar photovoltaic panel,” in Proc. 2020
Advances Sci. Eng. Technol. Int. Conf. (ASET), Dubai, UAE, Feb, pp. 1-6.
[CrossRef]

D. Saquib, M. N. Nasser, and S. Ramaswamy, “Image processing based
dust detection and prediction of power using ANN in PV systems,” in
Proc. 2020 Third Int. Conf. Smart Syst. Inventive Technol. (ICSSIT),
Tirunelveli, India, Aug, pp. 1286-1292. [CrossRef]

S. Keerthana, S. Hariharasudhan, and M. Sundaram, “Image processing-
based dust detection for solar panels,” in Proc. 2024 Int. Conf. Smart
Syst. Electr. Electron. Commun. Comput. Eng. (ICSSEECC), Coimbatore,
India, Jun. pp. 511-515, 2024.

J. Abukhait, “Dust detection on solar panels: A computer vision
approach,” Ing. Syst. Inf., vol. 29, no. 2, pp. 533-541, 2024. [CrossRef]
V. Kavya, and R. M. R. Keshav, “Solar dust detection system,” in Proc.
2018 Int. Conf. Power Energy, Environ. Intell. Control (PEEIC), Greater
Noida, India, Apr. New York: IEEE, 2018, pp. 138-140. [CrossRef]

A. M. Alatwi, H. Albalawi, A. Wadood, H. Anwar, and H. M. El-Hageen,
“Deep learning-based dust detection on solar panels: A low-cost sus-
tainable solution for increased solar power generation,” Sustainability,
vol. 16, no. 19, Art. no. 8664, 2024. [CrossRef]

A. Mobiny, A. Singh, and H. V. Nguyen, “Risk-aware machine learning
classifier for skin lesion diagnosis,” J. Clin. Med., vol. 8, no. 8, Art. no.
1241, 2019. [CrossRef]

K. Nair, A. Deshpande, R. Guntuka, and A. Patil, “Analysing X-ray images
to detect lung diseases using DenseNet-169 technique,” SSRN Electron.
J., 2022. [CrossRef].

R. T. Wahyuningrum, A. Kusumaningsih, W. Putra Rajeb, and I. K. E.
Purnama, “Classification of corn leaf disease using an optimized
DenseNet-169 model,” in Proc. 2021 9th Int. Conf. Big Data Inf., Technol.
(ICBIT), Surabaya, Indonesia, Dec, 2021, pp. 67-73.

A. Mehmood, “Efficient anomaly detection in crowd videos using pre-
trained 2D convolutional neural networks,” IEEE Access, vol. 9, pp.
138283-138295, 2021. [CrossRef]

S. N. Endah, and I. N. Shiddiq, “Transfer learning of Xception architec-
ture for garbage classification,” in Proc. 2020 4th Int. Conf. Informatics
Comput. Sci. (ICICoS), Yogyakarta, Indonesia, Nov., 2020, pp. 1-4.

S. H. Kassani, P. H. Kassani, R. Khazaeinezhad, M. J. Wesolowski, K. A.
Schneider, and R. Deters, “Diabetic retinopathy classification using a
modified Xception architecture,” in Proc. 2019 IEEE Int. Symp. Signal
Process. Inf. Technol. (ISSPIT), Atlanta, GA, USA: Dec, 2019, pp. 1-6.
[CrossRef]

L. Ali, F. Alnajjar, H. A. Jassmi, M. Gocho, W. Khan, and M. A. Serhani,
“Performance evaluation of deep CNN-based crack detection and locali-
zation techniques for concrete structures,” Sensors (Basel), vol. 21, no.
5, Art. no. 1688, 2021. [CrossRef]

X. Xia, C. Xu, and B. Nan, “Inception-v3 for flower classification,” in Proc.
2017 2nd Int. Conf. Image, Vision Comput. (ICIVC), Shenzhen, China, Jun,
2017, pp. 783-787.

S. M. Sam, K. Kamardin, N. N. A. Sjarif, and N. Mohamed, “Offline sig-
nature verification using deep learning convolutional neural network
architectures GoogleNet Inception-vl and Inception-v3,” Procedia
Comput. Sci., vol. 161, pp. 475-483, 2019.


https://doi.org/10.1080/15567036.2023.2205859
https://doi.org/10.1016/j.procs.2021.10.063
https://doi.org/10.1109/ASET48392.2020.9118377
https://doi.org/10.1109/ICSSIT48917.2020.9214216
https://doi.org/10.18280/isi.290214
https://doi.org/10.1109/PEEIC.2018.8665410
https://doi.org/10.3390/su16198664
https://doi.org/10.3390/jcm8081241
https://doi.org/10.2139/ssrn.4111864
https://doi.org/10.1109/ACCESS.2021.3118009
https://doi.org/10.1109/ISSPIT47144.2019.9001846
https://doi.org/10.3390/s21051688

20.

21.

22.

23.

24,

25.

TEPES [epub ahead of print], 2025
Balci et al. An Ensemble-Based Deep Learning Framework for Efficient Soiling Detection on Photovoltaic Panels

R. Polikar, “Ensemble learning,” in Ensemble Machine Learning: Meth-
ods and Applications, C. Zhang, Ed. Cham, Switzerland: Springer, 2012,
pp. 1-34. [CrossRef]

H. Lappalainen, and J. W. Miskin, “Ensemble learning,” in Advances in
Independent Component Analysis, M. Girolami, Ed. London, UK:
Springer, 2000, pp. 75-92. [CrossRef]

A. Dogan, and D. Birant, “A weighted majority voting ensemble approach
for classification,” in Proc. 2019 4th Int. Conf. Comput. Sci. Eng. (UBMK),
Elazig, Turkey, Sep, 2019, pp. 1-6.

H. Wang, Y. Yang, H. Wang, and D. Chen, “Soft-voting clustering ensem-
ble,” in Multiple Classifier Systems: 11th Int. Workshop, MCS 2013,
Proc., Nanjing, China, May, pp. 307-318, 2013.

M. A. Khan, N. Igbal, H. Jamil, H. Jamil, and D. H. Kim, “An optimized
ensemble prediction model using AutoML based on soft voting classifier
for network intrusion detection,” J. Netw. Comput. Appl., vol. 212, Art.
no. 103560, 2023. [CrossRef]

K. Tao et al., “Unlocking potential of pyrochlore in energy systems via
soft voting ensemble learning,” Small, vol. 20, no. 42, Art. no. 2402756,
2024. [CrossRef]

26.

27.

28.

29.

M. Ertel, A. Sadqui, S. Amali, I. Mahmoudi, Y. Bouferma, and N. E. El
Faddouli, “Predicting the severity of new SARS-CoV-2 variants in vacci-
nated patients using machine learning,” J. Theor. Appl. Inf. Technol., vol.
101, no. 10, p. 2023, 2023.

R. Yacouby, and D. Axman, “Probabilistic extension of precision, recall,
and Fl-score for a more comprehensive evaluation of classification
models,” in Proc. 2020 First Workshop Eval. Comparison NLP Syst.
(EvalNLPSys), Helsinki, Finland, Nov., 2020, pp. 79-91.

Y. Liu, Y. Zhou, S. Wen, and C. Tang, “A strategy on selecting performance
metrics for classifier evaluation,” Int. J. Mob. Comput. Multimedia Com-
mun., vol. 6, no. 4, pp. 20-35, 2014. [CrossRef]

V. S. S. Reddy, A. Sreejagathi, S. M. Venthan, and P. Vijayakumar, “Deep
learning in solar panel maintenance: A model comparison for auto-
mated cleaning,” in Proc. 2025 Fifth Int. Conf. Adv. Electr. Comput. Com-
mun. Sustain. Technol. (ICAECT), Istanbul, Turkey, Jan. pp. 1-7, 2025, pp.
1-7. [CrossRef]


https://doi.org/10.1007/978-1-4419-9326-7_1
https://doi.org/10.1007/978-1-4471-0443-8_5
https://doi.org/10.1016/j.jnca.2022.103560
https://doi.org/10.1002/smll.202402756
https://doi.org/10.4018/IJMCMC.2014100102
https://doi.org/10.1109/ICAECT63952.2025.10958824

