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ABSTRACT

Solar energy plays a pivotal role in renewable energy systems; however, dust accumulation on photovoltaic panels substantially reduces energy production effi-
ciency. Manual cleaning methods at large-scale plants are costly and impractical, highlighting the need for automated detection techniques. This study presents 
a novel image processing and deep learning-based approach to accurately detect dusty PV panels. Images underwent preprocessing, including Hue, Saturation, 
Value color space conversion, and morphological operations to precisely segment dust-affected regions. Individual performances of DenseNet169, Xception, 
and InceptionV3 models were evaluated, and an ensemble model—Deep Solar Ensemble—was developed via soft voting. Experimental results demonstrated 
that the proposed ensemble achieved a superior classification accuracy of 97.02%, a precision of 97.29%, a recall of 96.56%, and an F1 score of 96.92% on a 
binary classification task. To address real-world applicability and robustness, the study was extended to include comparisons with lightweight architectures 
and testing on a more diverse, multi-class dataset containing various fault types, where the ensemble continued to show robust performance. The proposed 
methodology offers significant potential for automating solar panel maintenance, thereby enhancing operational efficiency, while also considering the trade-
offs between accuracy and computational cost for practical deployment.

Index Terms—DenseNet, dust classification, ensemble learning, InceptionV3, photovoltaic panel, Xception

I. INTRODUCTION
In the contemporary world, energy has become a critical necessity 
due to the growing human population, industrial competition, and 
the continuous advancement of technology. Energy constitutes a 
cornerstone of both societal and individual life. It is indispensable 
for the continuity of industry, agriculture, transportation, technol-
ogy, and daily household activities. However, approximately 80% 
of the energy currently utilized is still derived from fossil fuels. 
The formation of fossil fuels through geological processes span-
ning millions of years results in their limited reserves. Factors such 
as finite reserves and the environmental harm caused by their use 
render fossil fuels unsustainable energy options [1, 2]. The esca-
lating environmental degradation and the consequent issue of cli-
mate change have compelled humanity to seek alternative energy 
sources. Consequently, there has been a shift toward renewable 
energy sources. Solar, wind, hydroelectric, and geothermal energy 
sources are advancing and gaining prominence in the energy sector. 
Among these, solar energy is one of the most frequently preferred 
energy sources. Despite its significant position among sustainable 

energy sources, the effective utilization of solar panels faces certain 
challenges. In particular, the accumulation of dust and dirt reduces 
the capacity of photovoltaic (PV) cells to absorb sunlight, thereby 
decreasing energy efficiency. Additionally, determining the optimal 
timing for solar panel maintenance enhances energy production effi-
ciency and extends the lifespan of the panels. Onim and colleagues 
developed the SolNet model, which employs a deep learning-based 
approach for the early detection of dust accumulation. Utilizing a 
Convolutional Neural Network (CNN) architecture, the SolNet model 
detects dust levels on solar panel images, offering recommendations 
that could increase panel efficiency by 15% [3]. Malik and colleagues 
[4] implemented an Arduino-based system for the automatic detec-
tion of dust accumulation and cloud-based reporting. This system 
analyzes data from dust sensors to automatically assess the cleanli-
ness of panels, reducing energy production losses by 25%. Abuqaaud 
and Ferrah [5] developed an innovative sensor-based approach to 
detect dust and soil on solar panels. This method, employing opti-
cal sensors, achieved 90% accuracy in detecting dust accumulation, 
significantly reducing efficiency losses. Saquib and colleagues [6] 
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utilized image processing and artificial neural networks (ANNs) to 
detect dust accumulation and predict energy production. Their study 
classified dust density on panels with 88% accuracy and estimated 
annual energy losses at 20%. Keerthana and colleagues [7] proposed 
an effective model for the early detection of dust accumulation using 
image processing techniques. Employing methods such as histogram 
equalization and edge detection, this model achieved 85% accu-
racy. Abukhait [8] developed a computer vision-based approach to 
enable more precise detection of dust accumulation. This approach 
utilized transfer learning with the ResNet50 model to analyze dust 
levels, achieving 92% accuracy. Kavya and Keshav [9] proposed a 
low-cost system for dust detection, offering an optical sensor-based 
solution that reduced energy losses by 30%. Alatwi and colleagues 
[10] presented an effective solution for sustainable energy produc-
tion using deep learning techniques. Their study achieved 86.79% 
accuracy with the DenseNet169 model, with further improvements 
through integration with a Support Vector Machine (SVM). In con-
trast to these studies, the present work preprocessed solar panel 
images using image processing techniques to segment dusty areas 
and employed various deep learning models. The preprocessing 
steps include Hue, Saturation, Value (HSV) color space transforma-
tion and morphological operations to ensure precise detection of 
dusty regions. The performance of DenseNet169, Xception, and 
InceptionV3 models was evaluated individually, and these models 
were combined using an ensemble method to propose the Deep 
Solar Ensemble model. Experimental results demonstrated that the 
DenseNet169 model achieved 96.12% accuracy, the Xception model 
91.67% accuracy, and the InceptionV3 model 94.64% accuracy, while 
the Deep Solar Ensemble model exhibited the highest performance 
with 97.02% accuracy, 97.29% precision, 96.56% recall, and 96.92% 
F1 score. To further assess the model’s real-world viability, this work 
also evaluates its robustness on a challenging multi-class dataset 

and compares its performance against lightweight architectures, 
addressing the critical trade-off between accuracy and computa-
tional efficiency. These results indicate that the image processing 
and ensemble approach surpasses the performance of individual 
models, offering a higher success rate in detecting dust accumula-
tion on solar panels.

II. METHODS
This study utilized two distinct datasets. The first dataset, sourced 
from a publicly available repository on Kaggle, comprises solar panel 
images categorized into two classes: clean and dirty. This dataset 
contains images specifically curated for binary classification tasks to 
distinguish between clean and dusty solar panels, capturing various 
environmental conditions and dust accumulation levels. The second 
dataset was introduced to address a more complex, multi-class clas-
sification problem. Its objective is to detect a wider range of surface 
anomalies, containing six classes: Clean (194 images), Dusty (191 
images), Bird-drop (192 images), Electrical-damage (104 images), 
Physical-Damage (70 images), and Snow-Covered (124 images). Both 
datasets include a balanced collection of images, with approximately 
equal representation across classes, ensuring robust training and 
evaluation of classification models. The distribution of images in the 
datasets is illustrated in Fig. 1. Multiple deep learning models were 
employed to assess their performance. To address potential class 
imbalances, the weighted class balancing method was applied to 
ensure equitable representation of all classes in both datasets. The 
balanced datasets were subjected to preprocessing steps, including 
image resizing and normalization techniques to standardize input 
dimensions and pixel intensities for model training. Additionally, 
to enhance the detection of dusty regions, image processing tech-
niques were applied, involving HSV color space transformation to 
emphasize dust-related color and brightness variations, followed by 
morphological operations to refine the segmentation of dusty areas. 
The preprocessed datasets were used to train the DenseNet169, 
InceptionV3, and Xception image classification algorithms. The 
trained models were combined using ensemble learning to form 
the Deep Solar Ensemble Learning model. The soft voting method 

Main Points

•	 Introduction of Deep Solar Snsemble: A novel ensemble 
model combining DenseNet169, Xception, and InceptionV3 
enhances dust detection on solar panels.

•	 Superior performance metrics: The Deep Solar Ensemble 
achieves high accuracy (97.02%), surpassing individual deep 
learning models.

•	 Advanced image preprocessing: Hue, Saturation, Value color 
space transformation and morphological operations improve 
the segmentation of dusty regions.

•	 Robustness validation on a multi-class dataset: The frame-
work’s effectiveness was further tested on a diverse dataset 
with six fault classes (e.g., dust, snow, physical damage), 
demonstrating its robustness in more complex, real-world 
scenarios.

•	 Comparative analysis for practical deployment: A compari-
son with lightweight models like MobileNet was conducted 
to analyze the critical trade-off between classification accu-
racy and computational efficiency for real-time applications.

•	 Practical application: The model enables efficient solar 
panel maintenance, reducing energy losses due to dust 
accumulation. Fig. 1. First dataset ratio.
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was adopted as the ensemble learning technique, and the perfor-
mance of the ensemble model was evaluated on the test datasets. 
Furthermore, for a comprehensive comparison, the MobileNet and 
VGG19 models were also trained and evaluated on the same datas-
ets. These models were not included in the ensemble but served as 
benchmarks to gauge the performance of the primary models. The 
general workflow of this study is summarized in Fig. 2. Performance 
evaluation metrics, including Accuracy, Recall, Precision, and F1 
score, were employed to assess the individual classifiers, the com-
parison models, and the ensemble model. The results were analyzed 
to elucidate the advantages provided by the ensemble learning mod-
els and other classifiers.

A. Image Preprocessing
The dataset was subjected to preprocessing steps to standard-
ize input dimensions and enhance the detection of dusty regions. 
These steps included image resizing and normalization techniques to 
ensure consistent pixel intensities and input dimensions for model 
training. Images were resized to a resolution of 224 × 224 pixels to 
align with the requirements of deep learning models, and pixel inten-
sities were normalized to the range [0, 1]. A representative clean 
solar panel image from the dataset is shown in Fig. 3. To address 
potential class imbalances, the weighted class balancing method was 
applied to ensure equitable representation of clean and dirty panel 
images during model training. This method assigns higher weights 
to underrepresented classes in the loss function, thereby mitigating 
bias toward the majority class and improving model performance 
on minority classes. Additionally, a series of image processing tech-
niques was applied to highlight color and brightness variations asso-
ciated with dust and to improve the segmentation of dusty areas. 
Images were initially converted from Blue, Green, Red (BGR) to HSV 
color space, as the HSV color space better distinguishes the color 

and brightness characteristics of dust. For the detection of dusty 
areas, a color range was defined in the HSV space with a lower bound 
of [H = 0, S = 0, V = 100] and an upper bound of [H = 180, S = 50, 
V = 200], and a binary mask was generated for pixels falling within 
this range. This mask designates pixels representing dusty regions 
as white (255) and others as black (0). To enhance the accuracy of 
the mask, morphological operations were applied; a 5 × 5 square 
kernel was used to perform an opening operation (morphological 
opening), which eliminated small noise artifacts. Subsequently, a 
closing operation (morphological closing) with the same kernel was 
applied to fill small gaps within dusty regions. For visualization of 
dusty areas, the masked regions were highlighted in red (BGR: [0, 0, 
255]) and overlaid onto the original image with a transparency factor 
of 0.5. The effectiveness of these preprocessing steps in segmenting 
dusty regions is illustrated with dirty solar panel images and their 
processed states in Fig. 4. These preprocessing steps enabled precise 
segmentation of dusty regions, thereby enhancing the classification 
performance of deep learning models.

Fig. 4 is a visualization of the dirty solar panel image (left) and the 
resulting image after applying the preprocessing (right). The dusty 
regions, determined through the above HSV color space conversion, 
morphological processes, and mask procedures, are highlighted in 
red and overlaid on the original image for the model to more easily 
recognize the regions.

B. Densenet169
DenseNet169 is a variation of the DenseNet (Densely Connected 
Convolutional Networks) architecture, which is a noteworthy con-
tribution to the CNN community. Architecturally, DenseNet169 has 
169 layers and accepts 224 × 224 pixel RGB images as input. This 
is followed by convolution and pooling layers, four dense blocks, 

Fig. 2. Workflow of study.
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and three transition layers, decreasing dimensionality between 
the blocks. Then the classification is accomplished through global 
average pooling, a fully connected layer, and a Softmax activation 
function. The DenseNet169 architecture is illustrated in Fig. 5. The 
most important feature of DenseNet169 is that each layer takes 
the output of the previous layers as input. This dense connection 
pattern has two significant advantages: First, it is parameter-effi-
cient since the feature maps are recycled throughout the network. 
Second, it improves the gradient flow, which essentially dimin-
ishes the vanishing gradient problem that is common in deep 
networks. These features are what make DenseNet169 highly 
effective at discovering irregular and fine-grained patterns such as 
dust, dirt, or damage on solar panels. Its ability to learn complex 
features with fewer parameters allows it to detect surface defects 
with high accuracy. Therefore, DenseNet169 was selected as part 
of the base ensemble due to these inherent architectural advan-
tages [11-13].

C. Xception
Xception is a CNN architecture designed by François Chollet, which 
builds upon the concepts of the Inception model by using more effi-
cient depthwise separable convolutions. The Xception architecture 

consists of 71 layers in 14 modules with approximately 23 million 
parameters. It consumes 224 × 224 pixel Red, Green, Blue (RGB) 
input images, which are fed into 36 depthwise separable convolu-
tional layers. Max pooling or strided convolutions are used between 
modules to downsample the feature map. The architecture con-
cludes with global average pooling and a fully connected layer for 
classification. The Xception architecture is depicted in Fig. 6. The 
two building blocks of the model are the depthwise separable 
convolutions, which decompose an ordinary convolution into two 
operations: a depthwise operation where one filter convolves all 
the input channels, and a pointwise operation (a 1 × 1 convolution) 
that adds the outputs. This design is particularly helpful because it 
allows the model to learn high-level spatial hierarchies from panel 
images—encoding features from low-level edges to complex anom-
aly shapes—using many fewer parameters. This equates to faster 
training and inference speeds without a noticeable decrease in per-
formance. Xception was added to the ensemble to take advantage 
of its newer and highly optimized architecture, providing a strong 
yet computationally light method. Its design philosophy enables a 
different and complementary feature extraction approach compared 
to DenseNet, which was the primary reason for its inclusion in the 
framework [14-16].

D. InceptionV3
InceptionV3 is a CNN architecture introduced by Christian Szegedy 
et al., with a focus on creating a deeper and wider network. Its core 
building blocks are Inception modules, where parallel convolution 
and pooling operations of different sizes (e.g., 1 × 1, 3 × 3, 5 × 5) are 
executed and combined. One of the innovations of the InceptionV3 
architecture is the factorization of larger convolutions—for instance, 
replacing a 7 × 7 convolution with two consecutive 3 × 3 convolu-
tions—to reduce computational cost while maintaining a large 
receptive field. The model consists of 48 layers and approximately 
24 million parameters and accepts RGB images of 224 × 224 pixels 
as input. These design choices allow the network to learn effectively 
across multiple scales and dimensions, improving both performance 
and efficiency. The architecture of InceptionV3 is shown in Fig. 7. 
This two-stream, multi-scale processing approach is particularly 
effective for this task, as defects on solar panels can vary signifi-
cantly in size—from tiny bird droppings and minute cracks to large 
clumps of snow or dust. The ability of InceptionV3 to detect both 

Fig. 3. Clean solar panel.

Fig. 4. Dirty solar panel and its processed state.
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fine-grained and coarse features simultaneously makes the over-
all ensemble more versatile and robust in identifying a wide range 
of anomalies. InceptionV3 was chosen as the third member of the 
ensemble to introduce this multi-scale processing capability, offer-
ing a complementary perspective to DenseNet’s feature reuse and 
Xception’s computational efficiency [17-19].

E. Ensemble Learning
Ensemble learning is a powerful approach widely used in machine 
learning and deep learning. This method aims to combine the pre-
dictions of multiple models to surpass the performance of a single 
model. Ensemble learning is based on the idea that the errors of 
different models will decrease on average, and thus the model will 

Fig. 5. Structure of DenseNet169 [12].

Fig. 6. Structure of Xception [14].
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have higher performance, lower variance, and better generalization 
ability. These methods can include various machine learning and 
deep learning models. The main advantage of this approach is that 
the error of one model can be compensated for other models. In this 
way, problems such as overfitting and underfitting can be overcome. 
Ensemble learning reduces the negative impact of such errors by 
using more than one model to prevent artificial intelligence models 
from overfitting the variables in the data set and reducing the gen-
eralization ability. Ensemble learning methods also have some dis-
advantages. These methods can be complex, and this can make the 
model difficult to manage and understand. Furthermore, the com-
putational power, cost, and time required to train multiple models 
and to build the final prediction model are some of the major disad-
vantages of ensemble learning models [20, 21].

F. Soft Voting
Soft voting, one of the ensemble learning methods, is a technique 
that aims to obtain a final prediction by combining the probability 
estimates of multiple models. Each model estimates the probability 
of belonging to a class. Then, the probability estimates of all models 
are summed and averaged on a class basis. The class with the high-
est average probability is selected as the final prediction. The effec-
tiveness of soft voting depends on the diversity and quality of the 
models in the ensemble. The use of different algorithms and hyper-
parameters can improve the performance of soft voting [22-25]. The 
formula of the soft-voting method is given in (1).

	 y argmax P y j xm

j

p

j m j� �� �
�
�

1

| .w 	 (1)

-	 ym: The sequence number of the class predicted by the ensem-
ble model.

-	 argmax: It is the process by which the index corresponding to 
the highest value of a function is determined.

-	 Pj(y = j | xm): It is the probability value expressing the probability 
that the sample xm belongs to the jth class.

-	 j: Indicates the sequence number of each model or unit in the 
community model.

-	 wj: j. represents the additive weight of the unit or model.

G. Deep Solar Ensemble Learning
The Deep Solar Ensemble Learning model was developed on the 
principle that a collection or ensemble of predictions from structur-
ally diverse models leads to a more robust and precise classifier than 
any single one of them. The model was developed to detect dust 
accumulation and other surface anomalies on solar panels with high 
precision. The model strategically integrates the three above algo-
rithms to benefit from their complementary strengths:

•	 DenseNet169 provides deep feature extraction with effective 
feature reuse.

•	 Xception provides a computationally lightweight and effective 
perspective with its depthwise separable convolutions.

•	 InceptionV3 provides the necessary multi-scale analysis for 
anomaly detection at varying sizes.

These three models were trained individually and then combined 
into an ensemble using the soft voting method. In this approach, 
the final prediction is made by averaging the probability scores of 
all the models, in a way that allows the models to ‘vote’ with their 

Fig. 7. Structure of InceptionV3 [17].



Balcı et al. An Ensemble-Based Deep Learning Framework for Efficient Soiling Detection on Photovoltaic Panels
TEPES [epub ahead of print], 2025

confidence levels. This process prevents the risk of misclassifica-
tion because of a certain weakness of any one model, leading to 
improved generalization. The ensemble performed wonderfully on 
the binary test data with 97.02% accuracy, 97.29% precision, 96.56% 
recall, and a 96.92% F1 score. The architecture of the Deep Solar 
Ensemble is illustrated in Fig. 8.

H. Performance Evaluation Metrics
It is a table used to evaluate the performance of a classification 
model. This matrix summarizes the number of correct and incorrect 
classifications by comparing the actual class labels with the model’s 
predictions. The size of the matrix depends on the number of classes, 
with rows representing actual classes and columns representing pre-
dicted classes. Cells on the diagonal of the matrix indicate the num-
ber of correct classifications. Cells off-diagonal indicate the number 
of misclassifications. The confusion matrix allows the calculation of 
many metrics used to evaluate the performance of the model. These 
metrics include accuracy, precision, recall, and F1 score. Fig. 9 shows 
an example of a confusion matrix for the classification model, illus-
trating true positive, false negative, true negative, and false positive 
classifications [26-28].

-	 True Positive (TP): Indicates the number of instances that the 
model classifies as positive and are actually positive. In other 
words, these are the instances that the model correctly assigns 
to the positive class.

-	 False Positive (FP): Indicates the number of instances that the 
model classifies as positive but is actually negative. These are 
negative samples that the model incorrectly includes in the 
positive class.

-	 True Negative (TN): Represents the number of instances that 
the model classifies as negative but are actually negative. In 
other words, these are the samples that the model correctly 
assigned to the negative class.

-	 False Negative (FN): Represents the number of instances that 
the model classifies as negative but are actually positive. This 
is the number of positive instances that the model incorrectly 
includes in the negative class.

1) Accuracy:
Accuracy is a metric that measures the proportion of correct pre-
dictions of a classification model. It is calculated as the number of 
correctly classified samples divided by the total number of samples. 
A high accuracy value indicates that the model has a good classifi-
cation ability. However, accuracy has some limitations. Especially in 
imbalanced datasets, accuracy can give misleading results. In imbal-
anced datasets, the model may achieve a high accuracy by correctly 
predicting the samples belonging to the majority class, but may not 
correctly classify the samples in the minority class [27, 28]. Equation 
(2) shows the accuracy metric formula.

	 Accuracy TP TN
TP TN FP FN

�
�

� � �
	 (2)

2) Precision:
Precision is a metric that measures the ratio of correct positive pre-
dictions of a classification model to all positive predictions. In other 
words, it shows how many of the samples that the model predicts as 
positive classes are actually positive. It is important when the cost of 
false positives is high. However, precision also has some limitations. 
A low precision value indicates that the model predicts many false 
positives. However, this does not provide information about whether 
the model makes a small number of true positive predictions [27, 
28]. Equation (3) shows the formula for the precision metric.

	 Precision �
�
TP

TP FP
	 (3)

Fig. 8. Deep Solar Ensemble Learning.
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3) Recall:
Recall measures the ratio of correctly classified instances of the posi-
tive class to all positive instances. In other words, it shows how well 
the model can recognize the positive class. Recall plays an impor-
tant role, especially in scenarios where false negatives are impor-
tant. However, the disadvantage of recall is that it does not take into 
account the false-positive predictions of the model, so it is not suf-
ficient to evaluate the accuracy of the model alone [27, 28]. Equation 
(4) shows the formula for the recall metric.

	 Recall �
�
TP

TP FN
	 (4)

4) F1-Score:
The F1 score provides a balance by taking the harmonic mean of pre-
cision and recall values. In unbalanced data sets, misleading results 
can be obtained when using precision or recall alone, but the F1 
score provides a more consistent performance evaluation by evaluat-
ing these two metrics together. It is particularly useful when the data 
set is unbalanced. By balancing both precision and recall, it provides 
a fairer measure of the overall success of the classification model 
[27, 28]. Equation (5) shows the formula for the F1 score metric.

	 F Score *1 2� �
�

Precision Recall
Precision Recall

* 	 (5)

III. RESULTS
In this study, a dataset of dirty and clean solar panel images obtained 
from Kaggle was used to classify solar panels, and a second dataset 
was used for comparison. In the pre-processing stage, the data were 
normalized to a 224 × 224 pixel size in the range of [0,1] and con-
verted from BGR to HSV color space. In addition, dusty areas were 
masked according to the color range determined in the HSV space, 
and these masks were improved with morphological opening/clos-
ing operations. After these steps, the weighted class method was 
applied to balance the classes, followed by separate training with 
DenseNet169, InceptionV3, and Xception algorithms. These trained 
models were combined using the soft voting method, an ensemble 
learning method, to create an ensemble learning model. For com-
parison with lightweight CNN models, the MobileNet and VGG19 

models were also trained separately with both datasets. The training 
results of each model and the ensemble model were analyzed and 
compared one by one. The dataset was divided into 80% for train-
ing and 20% for testing, respectively, and an early stopping func-
tion was used to prevent overfitting. The prediction performance of 
each classifier was calculated with accuracy, precision, recall, and F1 
score metrics. The outputs and findings of the models are presented 
below.

Table I summarizes the training hyperparameters used for the 
three compared deep learning models (Xception, InceptionV3, 
DenseNet169). To ensure a fair comparison, all models were trained 
with largely common settings such as 100 epochs, a batch size of 32, 
the Adam optimizer, a 0.2 dropout rate, and the Categorical Cross-
Entropy loss function. To improve model performance, different 
learning rates specifically optimized for each network architecture 
were chosen.

Fig. 9. Confusion matrix example [26].

TABLE I. 
PARAMETERS OF DEEP LEARNING ALGORITHMS

Model Xception InceptionV3 DenseNet169

Epochs 100 100 100

Batch size 32 32 32

Optimizer Adam Adam Adam

Learning 
rate

0,000025 0,000006 0,000003

Units 400 400 400

Dropout 0.2 0.2 0.2

Activation 
functions

ReLU (Dense), 
Softmax (Output)

ReLU (Dense), 
Softmax (Output)

ReLU (Dense), 
Softmax 
(Output)

Loss function Categorical 
crossentropy

Categorical 
crossentropy

Categorical 
crossentropy
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Table II shows that the best prediction performance is given by the 
ensemble learning model. This model is followed by the DenseNet169 
algorithm, which achieves the most successful results among the 
individual classifiers. The Xception and InceptionV3 models, on the 
other hand, showed a lower prediction performance compared to 
DenseNet169 on this dataset. The MobileNet and VGG19 models, 
added for comparison, showed the lowest performance. It is clearly 
seen that the lightweight CNN models did not show sufficient perfor-
mance in this study. The bold values in Table II indicate the highest 
performance values among the compared models.

According to Table III, the most accurate prediction performance on 
the second dataset is given by the Deep Solar Ensemble model. The 
Xception algorithm comes second, being the best individual classi-
fier. The DenseNet169 and InceptionV3 models, however, showed 
poorer prediction performance relative to Xception on this dataset. 
The bold values in Table III represent the best performance values 
among the compared models.

The performance of the models during training was analyzed by 
means of graphs showing the change in accuracy and loss values on 
the validation dataset according to the epochs.

Fig. 10 shows the validation accuracy curves of three different mod-
els (DenseNet169, Xception, InceptionV3) over 100 epochs. As can 
be seen from the graph, the verification accuracy of all models 
showed a general increasing trend as the training progressed and 
reached an equilibrium (plateau) over time. Comparing these curves, 
DenseNet169 (blue line) performed the best among the individual 
models, reaching a validation accuracy of about 96%. InceptionV3 
(red line) showed the second-best accuracy at around 94-95%, while 
Xception (black line) achieved a more modest result compared to the 
other two models, with an accuracy of around 91-92%.

Fig. 11 shows the change in the validation loss values of the same 
models according to the epochs. Consistent with the accuracy 
graph, it is seen that the loss values of all models generally decrease 
as the training progresses and reach a plateau after a certain point. 
The model with the lowest loss value was again DenseNet169, fol-
lowed by InceptionV3, and the highest loss value was observed in 
the Xception model. These graphs show that the models learn on 
the validation set and their performance reaches saturation after 
certain epochs. These general trends in training and validation 
metrics reflect the trainability and generalization capacities of the 
models.

IV. DISCUSSION
The detection of dust and dirt accumulation in solar panels is critical 
to improve energy efficiency and optimize maintenance processes. In 
this field, deep learning-based approaches combined with image pro-
cessing techniques have provided effective solutions. Important works 
in the literature and the proposed model are summarized in Table IV.

As seen in Table IV, studies in literature have generally used deep 
learning models to detect dust accumulation on solar panels. For 
example, Saquib et al. [6] achieved 88% accuracy with ANN, while 
Abukhait [8] achieved 92% accuracy with ResNet50. Alatwi et al. [10] 
achieved 86.79% accuracy with the combination of DenseNet169 
and SVM, while Varikuti et al. [29] achieved 82.63% accuracy with 
EfficientNetB0 and 87.32% accuracy with DenseNet121. However, 
in most of these studies, the ensemble learning approach was not 
adopted, and no details about the preprocessing steps were given. 
This study, on the other hand, evaluated DenseNet169, Xception, 
and InceptionV3 models individually, and then developed the Deep 
Solar Ensemble model, achieving 97.02% accuracy. The bold values 
in Table IV indicate the highest accuracy obtained across all models. 
This innovation was achieved through the use of advanced prepro-
cessing techniques (HSV color space conversion and morphological 
operations) and ensemble learning, providing one of the highest 
accuracies in the literature and an important step in optimizing solar 
panel maintenance processes.

V. CONCLUSION
In this study, the detection of dirt and dust particles that reduce 
energy efficiency in solar panels is targeted using artificial intelligence 
and deep learning techniques. The images in the dataset were sub-
jected to a series of preprocessing steps before being prepared for 
model training; these steps include bringing the images to a standard 
size (224 × 224), normalization of pixel values (range [0, 1]), conver-
sion to HSV color space for highlighting dusty areas, color threshold-
ing, and morphological operations (opening and closing). To solve 
the problem, DenseNet169, InceptionV3, and Xception image clas-
sification models based on CNN architecture were trained using 
these preprocessed data. In order to increase the predictive power 
of these models, a new model called the Deep Solar Ensemble was 
created by combining it with the soft voting method from ensemble 
learning approaches. The proposed Deep Solar Ensemble model, 
which combines DenseNet169, Xception, and InceptionV3, achieved 
outstanding results with an accuracy of 97.02%, precision of 97.29%, 
recall of 96.56%, and an F1 score of 96.92%, significantly surpassing 
the performance of the individual models. This ensemble approach 

TABLE II. 
METRIC RESULTS OF DEEP LEARNING ALGORITHMS ON THE FIRST DATASET

Model VGG19 MobileNet DenseNet169 Xception InceptionV3 Deep Solar Ensemble

Accuracy 0.880 0.882 0.96 0.916 0.946 0.97

Recall 0.864 0.857 0.955 0.899 0.945 0.965

Precision 0.888 0.903 0.962 0.933 0.943 0.972

F1 score 0.876 0.879 0.959 0.915 0.944 0.969
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addresses class imbalance and improves generalization capability, 
highlighting its potential for real-world deployment. Nonetheless, 
computational complexity and the need for real-time processing 
remain practical challenges to be addressed.

The findings show that the deep solar ensemble model exhibits a 
higher classification performance compared to the single models. 

This result emphasizes the effectiveness and performance improve-
ment of ensemble learning methods, especially in real-world data-
sets where class imbalances are common. Therefore, it can be 
predicted that this approach will be used more frequently in future 
classification-based studies. Ultimately, this research is expected to 
contribute to improving the energy efficiency of solar panels and 
optimizing maintenance processes such as panel cleaning.

TABLE III. 
METRIC RESULTS OF DEEP LEARNING ALGORITHMS ON THE SECOND DATASET

Model VGG19 MobileNet DenseNet169 Xception InceptionV3 Deep Solar Ensemble

Accuracy 0.810 0.850 0.845 0.856 0.805 0.897

Recall 0.817 0.852 0.838 0.844 0.775 0.881

Precision 0.809 0.867 0.859 0.844 0.814 0.901

F1 score 0.813 0.859 0.843 0.838 0.780 0.886

Fig. 10. Accuracy graph of the models.

Fig. 11. Loss graph of the models.
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This study, while with positive results, has several limitations that 
should be considered in the interpretation of the results and that 
offer possibilities for future research. One of the principal limita-
tions was the hardware capacity utilized for the experiments. The 
model training and testing were conducted on an NVIDIA GTX 1650 
graphics card, which has 4 GB of VRAM. This hardware constraint 
prevented the authors from trying larger batch sizes, attempt-
ing more complex model architectures, and reducing training 
times. Future work conducted with more powerful computational 
resources may be able to achieve higher performance through more 
extensive hyperparameter tuning and the application of deeper 
models. Second, there were constraints related to the multi-class 
dataset. The model’s performance on this second data was not as 
spectacular as it had been on the binary data for two reasons. First, 
the larger number of classes (six fault types) inherently makes the 
classification task harder. Second, the relatively small number of 
images in some classes, such as “Physical-Damage” and “Electrical-
damage,” caused a class imbalance that made it hard for the model 
to generalize to all classes. A larger and more balanced multi-class 
dataset would likely improve the model’s real-world robustness and 
accuracy.
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