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ABSTRACT

Due to the rising interest in sustainable transportation efforts, the adoption rate of plug-in electric vehicles (PEVs) in the transportation sector has grown signifi-
cantly. However, a rise in PEVs will create an additional load demand on the electrical distribution system (EDS), which leads to increased system power loss and 
bus voltage deviation. Hence, the additional load must be balanced through auxiliary generation units known as distributed generation (DG) which can be inte-
grated into EDS that minimize system power loss and bus voltage deviation. In the present study, Harris hawk’s optimization technique has been implemented 
for optimal DG allocation in the presence of PEVs. To crisscross the feasibility of the technique, a daily load curve has been considered with various load demand 
patterns in a day of 24 h. The optimization technique has been implemented and tested on practical 28 – bus EDS which is in Kakdwip, West Bengal, India.

Index Terms— Distributed generation, distribution system, Harris hawk’s optimization, plug-in electric vehicles, power loss minimization

I. INTRODUCTION
Currently, the world is facing various economic and environmen-
tal issues due to the increased demand for electrical energy. It was 
noticed that in the past few decades, due to urbanization and indus-
trialization, this demand has been increasing in rapid phase. Since 
conventional power-generating stations utilize fossil fuels, green-
house gas (GHG) is emitted causing harmful effects on the environ-
ment. However, demand for electrical energy is escalating gradually. 
Hence, auxiliary generation through distributed generation (DG) 
is one of the viable solutions for escalating electric demand. It is 
noticed that the appropriate allocation (location and size) of DG into 
the existing electric distribution system (EDS) will minimize system 
power loss and bus voltage deviation. However, inappropriate DG 
allocation will have an adverse impact on EDS. Hence, optimal DG 
allocation is a complex combinatorial optimization problem. Various 
reviews on DG allocation methods and techniques have been pre-
sented in [1–3].

Several authors used various techniques for solving DG allocation 
problems in EDS for power loss minimization as a major objective. 
Ackermann et al. have reviewed the significance and concern to give 
a general definition of distributed power production in competitive 
energy markets [4]. In the past few decades, several researchers 

have used various techniques to solve DG allocation problems. 
Initially, researchers have implemented analytical methods for solv-
ing DG allocation problems in EDS. In [5], researchers used rules 
of thumb also known as a golden rule or 2/3rd rule for DG alloca-
tion in an EDS. Hung et al. have implemented an analytical expres-
sion using the exact loss formula for single DG allocation and quick 
loss calculation in EDS [6]. Aman et al. have implemented a novel 
index method considering the system power stability index for DG 
allocation in EDS [7]. Hung et  al. have implemented an analytical 
expression using Elgerd’s loss formula for the allocation of both dis-
patchable and non-dispatchable renewable DG with various power 
factor operations [8]. Viral et al. have implemented a self-correction 
algorithm with reduced search space for enhancing computational 
speed to allocate multiple DG [9]. Ghosh et  al. have developed a 
simple conventional search method for evaluating the cost of losses 
and DG [10].

In [11], researchers have used the Kalman filter algorithm and power 
loss sensitivity index for identifying DG size and location, respec-
tively. In the past few years, researchers are implementing heuristic 
or meta-heuristic algorithms for DG allocation in distribution sys-
tems. In [12], researchers have used an artificial bee colony algo-
rithm for DG allocation in variable loading conditions.
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In [13], a bacterial foraging optimization algorithm has been used to 
solve DG allocation problem by considering techno-economic ben-
efits. Sultana and Roy have implemented an oppositional krill herd 
algorithm for allocation of various energy sources in EDS [14]. In 
[15], researchers have used a bat algorithm for allocation of solar 
photovoltaic arrays in distribution system. Sultana et al. have used 
grey wolf optimizer (GWO) for multiple DG the allocation in distri-
bution systems for loss minimization [16]. In [17], researchers have 
used flower pollination algorithm for allocation of different types 
of DGs in standard distribution systems. In [18], researchers have 
implemented symbiotic organisms search algorithm for power loss 
minimization through DG allocation. In [19], researchers have imple-
mented ant lion optimization for the allocation of different types of 
DGs in standard distribution systems. Tanvar et al. evaluated techno-
economic benefits of DG allocation in distribution systems using a 
combinational method of analytical and particle swarm optimization 
[20]. In [21], researchers have used whale optimization algorithm for 
the allocation of different types of DGs and evaluated the system 
reliability in standard distribution systems.

In recent years, researchers have shifted from single algorithm to 
combination of two or more algorithms to exchange qualities of algo-
rithms for obtaining optimal results. In [22], researchers have imple-
mented a combinational technique that consists of genetic algorithm 
and particle swarm optimization for power loss minimization through 
multiple DG allocation. A genetic-based tabu search technique has 
been implemented for renewable DG allocation in EDS [23]. Jamian 
et  al. have implemented evolutionary particle swarm optimization 
which is based on ranking procedure for DG allocation [24]. Sanjay 
et al. have implemented hybrid GWO for multiple DG allocation in 
standard distribution systems [25]. In [26], researcher has imple-
mented water cycle algorithm for solar- and wind-based generation 
system allocation in practical distribution systems considering power 
loss minimization as main objective. Venkatareddy et al. have imple-
mented Jaya optimization algorithm for the allocation of mixed solar 
and wind energy source in EDS for loss minimization [27]. Several 
researchers have considered load on distribution systems is varying 
from 50% to 160%, which is linear variation. However, in practical, 
scenario distribution system with different loads residential, com-
mercial, and agricultural has stochastic load variation. Hence, in the 
present study, stochastic nature of daily load curve of practical distri-
bution system has been considered for more realistic feasibility of DG 
allocation in the presence of plug-in electric vehicles (PEVs).

Concerns about emissions of greenhouse gas have prompted a trend 
toward zero-emission PEVs, which are likely to play a vital role in trans-
forming the road transportation system. In [28], researchers have 
solved dynamic economic dispatch problem with PEVs charging pat-
tern in daily load demand of 24 h using a multi-objective biogeography-
based optimization. Yang et al. implemented teaching a learning-based 
optimization for solving similar optimization problem considering mul-
tiple PEVs integration [29]. In [30], researchers have presented rela-
tionship between penetration of PEVs and load demand increase in 
distribution system and solved this through effective load modeling 
technique. Injeti et al. have implemented a bio-inspired optimization 
algorithm for solving DG allocation in the presence of PEVs problem 
considering stochastic load demand pattern [31]. In [32, 33], research-
ers have discussed the impact and prospects of PEV charging pattern 
and energy source allocation on grid. An investigation of the barriers to 
the adoption of electric vehicles and vehicle-to-grid technology in India 
has been presented in [34]. However, it is observed from the literature 
that very few researchers have considered the impact of PEVs integra-
tion and DG allocation with various charging conditions.

In the present study, charging behavior of PEVs is considered for two 
different scenarios which are based on probability distribution of 
charging time. These two scenarios are evaluated through certain 
count of PEVs and later integrated into the load pattern of a day of 
the distribution system. The impact of PEVs charging behavior is 
evaluated. Since integration of PEVs creates additional demand on 
the system and deteriorates its performance, optimal DG allocation 
must be carried out. In the present study, a novel Harris hawk’s opti-
mization (HHO) technique has been implemented to solve the opti-
mal DG allocation in the presence of the PEVs.

The present article is structured as a formulation of mathematical 
model illustrated in section II; implementation of HHO technique for 
optimal DG allocation in the presence of PEVs in section III analysis 
of system for various charging patterns of PEVs without DG alloca-
tion, section IV presents simulation results attained after optimal DG 
allocation using HHO, and section V presents conclusion and future 
directions of the current study.

II. PROBLEM FORMULATION
The practical influence of PEVs charging behavior and DG allocation 
into distribution system must be evaluated appropriately to avoid 
deterioration of power quality and system reliability.

A. Objective Function
The major objective of the current optimization problem is to mini-
mize daily active power in the distribution system. The daily active 
power loss can be curtailed by minimizing active power loss index 
(APLI). Here, APLI is considered as the ration of daily active power 
loss of the system with and without DG allocation which is given as 
Pdaily lossDG

�  and Pdaily loss� , respectively.

	 OF min APLI� �� � � 	 (1)
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Main Points

•	 The complex combinatorial problem of distributed genera-
tion allocation in the presence of plug-in electric vehicles has 
been solved using Harris hawk’s optimization technique.

•	 The technique has been implemented and tested on practi-
cal distribution system.

•	 To crisscross the practicality of the technique, daily load 
curve has been considered with various load demand pat-
terns in a day of 24 h.

•	 The present study will serve as a source for researchers and 
distribution network operators.
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where Pt loss
DG
,�  and Pt,loss are the tth hour active power loss of the system 

with and without DG allocation, respectively.

The power loss and voltage profile as noticed from the literature are 
contradictory in nature; due to this reason, in the present study, volt-
age deviation index (VDI) has been evaluated to check the feasibility 
of the technique.

	 VDI min V V
V

j N and V pu
t

t j
bus�

��
�
�

�
�
�

� � �
�
�

1

24
1

1
12 1 05, ,.., . . . 	 (3)

where Vt j,  is the bus voltage at jth  bus at tth hour.

B. System Constraints

1) Equality Constraints
System equality constraints refer to balance of active and reactive 
powers.

	 P P P P Pt sub t DG t PEV t demand t loss, , , , ,� � � � 	 (4)

	 Q Q Qt sub t demand t loss, , ,� � 	 (5)

where Pt sub,  and Qt sub,  are the active and reactive power from the 
substation at tth hour; Pt loss,  and Qt loss,  are the active and reactive 
power loss of the system at tth hour; Pt demand,  and Qt demand,  are the 
active and reactive power demand at tth hour; Pt DG,  power generated 
from DG at tth hour; Pt PEV,  active load demand of PEV at tth hour.

2) Inequality Constraints
The following are the inequality constraints:

	 0 95 1 05. .,≤ ≤Vt j 	 (6)

	 P P Pmin
DG

t
DG

max
DG≤ ≤ 	 (7)

	 Q Q Qmin
DG

t
DG

max
DG≤ ≤ 	 (8)

III. METHODOLOGY
A. Harris Hawks’ Optimization
Heidari et al. proposed a novel population-based optimization tech-
nique known as HHO. It is a nature-inspired optimization technique. 
The optimization technique is inspired by the hunting behavior of 
predatory birds which are found in the USA, especially the south-
ern portion of Arizona lives in steady communities called Harris’ 
hawk (Parabuteo unicinctus). These birds possess a unique coop-
erative behavior of foraging with other members of the family liv-
ing in a similar group. However, other birds will normally discover 
and attacks the prey, alone. This bird desert predator demonstrates 
advanced team hunting abilities in tracking, surrounding (encir-
cling), flushing out, and finally attacking the prospective prey. During 
the non-breeding season, these birds are smart enough to offer din-
ner parties for several individuals. In the raptor realm, these birds 
are known as genuinely cooperative predators. The team mission 
of these birds starts at morning twilight. These birds often sit on 
power poles and giant trees within their territory. The strategic 
moves of these birds are well-planned because they know their 

family team. To catch a prey, Harris’ hawks use one of the seven 
killing strategy known as surprise pounce. During the hunt, these 
hawks use this intelligent strategy to detect and attack the flee-
ing rabbit beyond the cover from various directions and converges 
simultaneously. The assault may be accomplished quickly by catch-
ing the astonished victim in a few seconds, but depending on the 
prey’s fleeing ability and habits, the seven kills may entail repeated, 
short-length, fast dives nearby the prey over many minutes. Harris’ 
hawks can exhibit a range of pursuit methods depending on the 
complexity and a prey’s fleeing habits. When the best hawk (leader) 
stoops at the prey and becomes disoriented, the hunt is resumed by 
other team members. The escaping rabbit can be confused through 
these alternating hunt resume behaviors. The main advantage of 
such cooperative tactics is that the birds can pursue the detected 
rabbit to exhaustion, which cannot reestablish its defensive abili-
ties by baffling the predators. In general, among other hawks, one 
effective and skillful hawk will quickly catch the exhausted rabbit 
and shares it with the others. The main behavior of Harris’ hawks 
can be observed from nature. The major phases of HHO are explor-
atory and exploitative. These phases are inspired by the different 
attacking strategies of Harris’ hawks which are exploring a prey and 
surprise pounce [35].

1) Exploration Phase
In general, Harris’ hawks have powerful eyes to identify and chase 
prey. However, sometimes, it is not easy to identify the prey. Hence, 
the hawks must wait and examine the desert area to identify a prey 
which may take several hours. In the present optimization, the can-
didate solutions are the hawks and the best candidate solution in 
every move will be taken as near optimum or intended prey. The 
hawks randomly sit in some locations and follow two strategies to 
identify a prey. In HHO, for each perching strategy, there will be an 
equal chance q is considered. First strategy is based on distance 
between position of the rabbit and other family members and the 
second strategy is based on perch on tall trees randomly inside the 
home region. These two strategies are formulated as follows:

	 Y t
Y t r Y t r Y t q

Y t Y t

rand rand

rabbit m

�� � �
� �� � �� � � �

� �� � �
1

2 0 51 2* * * .

�� �� � �� �� � �

�
�
�

�� r lb r ub lb q3 4 0 5* * .
	 (9)

where Ym(t) and Y(t + 1) are the hawks’ position vector for the pres-
ent and subsequent iteration t; r r r r q1 2 3 4, , , ,and  are random numbers 
updated in every iteration between 0 and 1; Y trand � �  is current popu-
lation randomly chosen hawk; Y trabbit � �  is the prey or rabbit posi-
tion; lbandub� �  are lower and upper limits of variables; Y tm � �  is the 
hawks’ current population average position.

	 Y t
N

Y tm

i

N

i� � � � �
�
�1

1

	 (10)

where Y ti � �  specifies each hawk position in iteration t; N indicates 
overall hawks.

2) Transition from Exploration to Exploitation
The HHO algorithm transitions from exploration to exploitation and 
then switches between different exploitative actions depending on 
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the prey’s fleeing energy. During the escape activity, a prey’s energy 
level drops significantly. The prey’s energy to escape is modeled as:

	 E t
T

E� ��
�
�

�
�
�2 1 0* * 	 (11)

where E is the prey’s escaping energy; T is the maximum iteration 
number; t is the current iteration; and E0 is prey’s initial escaping 
energy. The value of E0 varies from � �1 1to  for two different scenar-
ios of rabbit escaping energy. If E0 value is decreasing from 0 1to− , 
the rabbit is physically declining. The rabbit will strengthen when E0 
value is increasing from 0 1to+ . When the prey’s fleeing strength 
is less than one, HHO will improve the local search for the finest 
choices in the vicinity.

3) Exploitation Phase
The Harris’ hawks conduct the surprise pounce in this phase by 
attacking the target prey discovered in the previous phase. Prey, on 
the other hand, frequently attempts to flee from harmful circum-
stances. As a result, different pursuing techniques emerge in real-
world settings. The HHO proposed four different ways to mimic the 
attacking stage based on prey fleeing behaviors and pursuit strate-
gies of Harris’ hawks. Preys are continually trying to get away from 
dangerous circumstances. Assume r is the probability of a prey suc-
cessfully escaping ( . )r < 0 5  or unable to escape r �� �0 5.  before a 
surprise pounce. Irrespective of prey’s trails, the hawks will engage 
in a harsh or soft besiege to capture it. Prey encircle is performed 
from various directions, softly or hardly, depending on the prey’s 
residual energy. The prey’s escaping energy (E) is utilized to simulate 
this strategy and allow the HHO to switch flip between the processes 
of soft and hard besiege. The hard besiege happens when E < 0 5.  
and soft besiege occurs when E ≥ 0 5. .

a) Soft Besiege
Soft besiege will be performed by the hawks when the rabbit is 
failed to escape after trying some misleading random jumps with 
enough energy (i.e., r and E≥ ≥0 5 0 5. . ). The following rules mimic 
this behavior:

	 Y t Y t E J Y t Y trabbit�� � � � � � � � � � �1 � * * 	 (12)

	 �Y t Y t Y trabbit� � � � � � � � 	 (13)

	 J r� �� �2 1 5* 	 (14)

where �Y t� �  is the variation of rabbit position vector at iteration 
t; J is rabbit jump strength during escaping procedure; r5 is random 
number between 0 and 1. The nature of rabbit moment is simulated 
randomly in each iteration when J value changes.

b) Hard Besiege
Hard besiege will be performed by the hawks when the rabbit has 
exhausted and has less energy to escape (i.e., r and E� �0 5 0 5. . ). 
The hawks finally execute the surprise pounce by encircling the prey. 
The present locations are updated using the following equation:

	 Y t Y t X t Erabbit�� � � � � � � �1 � * 	 (15)

c) Soft Besiege with Progressive Rapid Dives
Before the surprise pounce, a soft besiege is planned, but the rabbit 
can effectively escape with enough energy (i.e., r and E� �0 5 0 5. . ). 
This process is further intelligent than the earlier case. In competi-
tive circumstances when hawks wish to grab the prey, they use the 
skill of choosing the best possible dive.

	 A Y t E J Y t Y trabbit rabbit� � � � � � � � �* * 	 (16)

Earlier dive results will be compared with current movement pos-
sible results to identify good dive among two. If it is not satisfac-
tory (when hawks find that the rabbit is performing more misleading 
movements), hawks start to execute irregular, sudden, and quick 
dives when advancing the rabbit. For diving, hawks chose levy flight 
(LF) patterns as follows:

	 Z A LF D S� � � �� 	 (17)

where LF is levy flight function [36]; D is problem dimension; S is 
1×D  sized random generated vector.

As a result, the ultimate approach for updating hawk locations dur-
ing the soft besiege phase can be achieved via (18) shown below.

	 Y t
A if F A F Y t

Z
�� � �

� � � � �� �
1

� � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �� � � � � � � � � � � � � � � � �if F Z F Y t� � � � �� �
�
�
�

��
	 (18)

Only the better location of A or Z will be chosen as the next spot in 
each phase. This approach is used by all search agents.

d) Hard Besiege with Progressive Rapid Dives
Before the surprise pounce, a hard besiege is planned to catch and 
kill the prey. The rabbit is not having sufficient energy to escape (i.e., 
r and E< <0 5 0 5. . ). In this scenario, hawks will try to reduce the gap 
between them and escape prey.

As a result, the ultimate approach for updating hawk locations dur-
ing the hard besiege phase can be achieved via (18). However, A and 
Z will be updated as follows:

	 A Y t E J Y t Y trabbit rabbit m� � � � � � � � �* * 	 (19)

	 Z A LF D S� � � �� 	 (20)

B. Implementation of Harris Hawks’ Optimization for Optimal 
Distributed Generation Allocation in the Presence of Plug-in 
Electric Vehicles
The sequence of steps involved to employ present optimization tech-
nique for optimal DG allocation in the presence of PEVs is given as 
follows:

Step 1: Initialize the algorithm parameter values (N and T are popula-
tion size and maximum number of iterations, respectively) as per the 
requirement.
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Step 2: Input the bus and line data for the load flow study pro-
gram [37].

Step 3: Assign the lower and upper limit for variables (DG locations 
and sizes).

Step 4: With above lower and upper limits generate a solution set of 
random variables (search hawks).

Step 5: Using the direct approach method for load flow, evaluate the 
objective function for different set of randomly generated variables 
using equation (1).

Step 6: Identify the optimal value of the objective function through 
identification of best hawk position using equation (9).

Step 7: In every step, for each hawk, the values of E E J, 0 and  have to 
be updated using (11).

Fig. 1. Single line diagram of 28 – bus system.

Fig. 2. Daily load demand pattern of 28 – bus system
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Step 8: If E ≥ 1 , update the hawks position using , else go to 
next step.

Step 9: If E ≥ 0 5. , proceed to next step, else jump to step 11.

Step 10: If r ≥ 0 5. , update the hawks position using (12), else update 
using the equation (18) and jump to step 12.

Step 11: If r < 0 5. , update the hawks position using (18), else update 
using the equation (18) and jump to step 13.

Step 12: If E < 0 5. , update the hawks position using (16), proceed to 
next step, else jump to step 13.

Step 13: Check for the stopping criteria or maximum number itera-
tions. If yes, display the values of DG location and size, else go to step 
4 and repeat.

IV. RESULTS AND DISCUSSION
A practical 28 – bus distribution system which is in Kakdwip, West 
Bengal, India, has been considered for the analysis of the present 
optimization technique. The single-line diagram of the distribution 

Fig. 3. Voltage profile of the system without PEVs and DGs. PEVs, plug-in electric vehicles; DG, distributed generations.

Fig. 4. Voltage profile of the system with PEVs and without DGs. PEVs, plug-in electric vehicles; DG, distributed generations.
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system is illustrated in Fig. 1. The bus and line data of the system are 
taken from [38]. The seasonally varying load demand on the system 
is considered from [39]. However, for the present study, the daily 
load demand is considered as peak demand on the system during 
summer season for 24 hours as illustrated in Fig. 2. The present sys-
tem has been assessed based on three different cases.

Case i: Actual system assessment without PEVs and DGs (base case);

Case ii: System assessment with PEVs and without DGs;

Case iii: System assessment with PEVs and DGs (optimal case).

A. Actual System Assessment without Plug-in Electric Vehicles and 
Distributed Generations (Base Case)
The present simulation has been implemented in MATLAB® version 
R2021b installed on laptop of Core i7 6500U CPU @ 2.5 GHz, 8GB 
RAM. A direct approach for distribution system load flow studies 
has been used for load flow analysis [37]. The total real and reactive 
power demand on the system is 761 kW and 776.41 kVAr, respec-
tively. The network has maximum power demand of 947 kVA. The 

active power loss of the system is 68.81 kW. The voltage profile of 
the network without PEVs and DGs is illustrated in Fig. 3.

B. System Assessment with Plug-in Electric Vehicles and without 
Distributed Generations
To assess the effect of PEVs addition on distribution system per-
formance, it has been considered that each bus will have five 
PEVs (i.e., a total of 27 × 5 = 135 PEVs). However, the additional 
electric demand due to PEVs will be supplied by the slack bus. 

Fig. 5. Real power demand with and without PEVs. PEVs, plug-in 
electric vehicles.

TABLE I. 
COMPARISON OF VARIOUS NETWORK PARAMETERS WITHOUT 

AND WITH PEVS LOAD

Network Parameter
Without 

PEVs
With 
PEVs

Daily real power demand of the system in kWh 18264 19951.5

Daily real power loss of the system in kWh 1243.44 1376.16

Minimum bus voltage in p.u. 0.9230 at 
13th hour

0.9186 at 
13th hour

Maximum bus voltage in p.u. 0.9917 at 
9th hour

0.9912 at 
7th hour

PEVs, plug-in electric vehicles.

TABLE II. 
DAILY REAL POWER DEMAND AND LOSS ON THE SYSTEM FOR 

THREE DIFFERENT CASES

Time 
in 
Hour

System Without 
PEVs and DGs

System With PEVs 
and Without DGs

System With PEVs 
and DGs

Load in 
kW

Loss in 
kW

Load in 
kW

Loss in 
kW

Load in 
kW

Loss in 
kW

1 580 33.07 627.33 36.54 627.33 14.55

2 572.65 32.27 620 35.65 620 14.33

3 580 33.07 627 36.54 627 14.55

4 572 32.14 619 35.51 619 14.26

5 558 30.58 603.66 33.77 603.66 13.84

6 536 28.09 580 31.017 580 13.13

7 500.78 24.39 541.94 26.91 541.94 12.25

8 515.62 25.81 558 28.5 558 12.5

9 515.62 25.81 558 28.5 558 12.5

10 514.8 25.77 557.17 28.44 557.17 12.51

11 600 35.68 649.32 39.42 649.32 15.477

12 700 49.67 758.38 54.95 758.38 20.94

13 714.8 51.81 773.6 57.34 773.6 21.87

14 714.8 51.76 773.6 57.29 773.6 21.82

15 714.8 51.76 773.6 57.29 773.6 21.82

16 679.68 46.4 735.55 51.33 735.55 19.49

17 665.62 44.43 720.33 49.13 720.33 18.72

18 657.03 43.22 711 47.79 711 18.24

19 680 46.44 735.55 51.38 735.55 19.54

20 686 47.14 742.32 52.44 742.32 19.96

21 678.9 46.44 734.71 51.3 734.71 19.53

22 643 41.35 696.6 45.71 696.6 17.49

23 628.9 39.36 680 43.5 680 16.75

24 614.48 37.52 665.38 41.47 665.38 16.09

PEVs, plug-in electric vehicles; DG, distributed generations.
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It has been considered that the penetration of low, medium, 
and pure battery-based PEVs are 45%, 25%, and 30%, with bat-
tery capacity of 15, 25, and 40 kWh, respectively [29]. It is also 
expected that the state of charge of home-returned PEVs is 
50%. Hence, overall electric demand due to PEVs per bus per 
day is 5 15 0 45 25 0 25 40 0 30 0 5 62 5* . . . * . .� � � � �� � � kW  and total 
demand for electric distribution system required per day is 
62 5 27 1687 5. * .= kW . The voltage profile of the network with PEVs 
and without DGs is illustrated in Fig. 4. The real power demand on 
the network without and with PEVs is illustrated in Fig. 5.

The comparison between various parameters of distribution system 
without and with PEVs load is presented in Table I. It can be observed 
that subsequent increase in the system real power demand after 

PEVs load integration. From Table I, it is noticed that due to the PEVs 
load demand of 1687.5 kW, the daily real power demand of distribu-
tion network is increased by 9%.

C. System Assessment with Plug-in Electric Vehicles and 
Distributed Generations (Optimal Case)
The actual real power demand on the electric distribution network 
has increased due to PEVs load. Hence, integration of DGs shares 
increased real power demand on the network. The DGs considered 
for allocation will inject only real power generation. For optimal DG 
allocation, HHO algorithm has been implemented. Table II presents 
the daily real power demand and loss on the system for three differ-
ent cases. The voltage profile of the network with PEVs and DGs is 
illustrated in Fig. 6. Fig. 7 illustrates the daily real power loss variation 

Fig. 6. Voltage profile of the system with PEVs and DGs. PEVs, plug-in electric vehicles; DG, distributed generations.

Fig. 7. Power loss reduction from base case to optimal case.
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for different cases. It can be observed that the daily real power loss 
is increased after PEVs load and decreased when DGs are allocated 
appropriately in the network.

It is noticed from Table II that rise in load demand causes increase in 
power loss every hour for normal system and system with PEVs load. 
However, for system with PEVs and DGs, power loss has reduced.

Table III shows the optimal results obtained after DG allocation in the 
presence of PEVs. It is noticed from Table III that significant amount 
of power loss has been reduced from base case to optimal case of 
system using HHO algorithm. The minimum bus voltage has been 
increased from 0.9230 to 0.9675 at 13th hour. The power loss reduc-
tion from base case to optimal case can be noticed from Fig. 7.

V. CONCLUSION AND FUTURE DIRECTIONS
In the present article, a practical 28-bus Indian distribution system 
is considered for assessing the effect of PEVs along with DG allo-
cation. The load pattern of daily real power demand for 24 hours 
is considered. The active power loss of the system is 68.81 kW. It 
can be observed that subsequent increase in the system real power 
demand after PEVs load integration is 1687.5 kW, and the daily real 
power demand of distribution network is increased by 9%. The 
objective function is framed to minimize the daily active power loss 
using repetitive direct approach for load flow analysis. Harris hawk’s 
optimization algorithm is implemented to minimize the objective 
function. The superiority of HHO for solving the optimization prob-
lem of optimal DG allocation in practical distribution system in the 
presence of PEVs is discussed. It can be observed that the daily real 
power loss is increased after PEVs load and decreased when DGs are 
allocated appropriately in the network. The voltage profile of the 
network with PEVs and DGs has been improved. From the simulation 
results obtained, it is concluded that by using the HHO algorithm, the 
system performance is enhanced. The future direction of the work 
is considering PEVs simultaneously as a load and DG, with its charg-
ing and discharging habits considered during off and on peak hour 
demand. For further reduction of system losses and to enhance the 
performance, researchers can extend the vehicle to grid technology 
as one of the DGs to the already existing DGs.

Peer-review: Externally peer-reviewed.

Acknowledgement: The author would like to thank the management of 
People’s Education Society (PES University), Bengaluru for supporting this 
research work.

Declaration of Interests: The author has no conflicts of interest to declare.

Funding: The author declared that this study has received no financial 
support.

REFERENCES
1.	 S. S. Kola, “A review on optimal allocation and sizing techniques for DG 

in distribution systems,” Int. J. Renew. Energy Res. (IJRER), vol. 8, no. 3, 
pp. 1236–1256, 2018.

2.	 I. A. Quadri, S. Bhowmick, and D. Joshi, “A comprehensive technique for 
optimal allocation of distributed energy resources in radial distribution 
systems,” Appl. Energy, vol. 211, pp. 1245–1260, 2018. [CrossRef]

3.	 K. S. Sambaiah, and T. Jayabarathi, “Loss minimization techniques for 
optimal operation and planning of distribution systems: A review of 
different methodologies,” Int. Trans. Electr. Energy Syst., vol. 30, no. 2, 
p. e12230, 2020. [CrossRef]

4.	 T. Ackermann, G. Andersson, and L. Söder, “Distributed generation: A 
definition,” Electr. Power Syst. Res., vol. 57, no. 3, pp. 195–204, 2001. 
[CrossRef]

5.	 H. L. Willis, “Analytical methods and rules of thumb for modeling DG-
distribution interaction,” 2000 Power Engineering Society Summer 
Meeting (Cat. No. 00CH37134), vol. 3. IEEE Publications, Seattle, WA, 
USA; 2000, pp. 1643-1644.

6.	 D. Q. Hung, N. Mithulananthan, and R. C. Bansal, “Analytical expressions 
for DG allocation in primary distribution networks,” IEEE Trans. Energy 
Convers., vol. 25, no. 3, pp. 814–820, 2010. [CrossRef]

7.	 M. M. Aman, G. B. Jasmon, H. Mokhlis, and A. H. A. Bakar, “Optimal 
placement and sizing of a DG based on a new power stability index and 
line losses,” Int. J. Electr. Power Energy Syst., vol. 43, no. 1, pp. 
1296–1304, 2012. [CrossRef]

8.	 D. Q. Hung, N. Mithulananthan, and R. C. Bansal, “Analytical strategies 
for renewable distributed generation integration considering energy 
loss minimization,” Appl. Energy, vol. 105, pp. 75–85, 2013. [CrossRef]

9.	 R. Viral, and D. K. Khatod, “An analytical approach for sizing and siting 
of DGs in balanced radial distribution networks for loss minimization,” 
Int. J. Electr. Power Energy Syst., vol. 67, pp. 191–201, 2015. [CrossRef]

10.	 S. Ghosh, S. P. Ghoshal, and S. Ghosh, “Optimal sizing and placement of 
distributed generation in a network system,” Int. J. Electr. Power Energy 
Syst., vol. 32, no. 8, pp. 849–856, 2010. [CrossRef]

11.	 S. H. Lee, and J. W. Park, “Optimal placement and sizing of multiple DGs 
in a practical distribution system by considering power loss,” IEEE Trans. 
Ind. Appl., vol. 49, no. 5, pp. 2262–2270, 2013. [CrossRef]

12.	 F. S. Abu-Mouti, and M. E. El-Hawary, “Optimal distributed generation 
allocation and sizing in distribution systems via artificial bee colony algo-
rithm,” IEEE Trans. Power Deliv., vol. 26, no. 4, pp. 2090–2101, 2011. 
[CrossRef]

13.	 M. Kowsalya, and Kowsalya M, “Optimal size and siting of multiple dis-
tributed generators in distribution system using bacterial foraging opti-
mization,” Swarm Evol. Comput., vol. 15, pp. 58–65, 2014. [CrossRef]

14.	 S. Sultana, and P. K. Roy, “Oppositional krill herd algorithm for optimal 
location of distributed generator in radial distribution system,” Int. J. 
Electr. Power Energy Syst., vol. 73, pp. 182–191, 2015. [CrossRef]

15.	 S. K. Sudabattula, and K. M, “Optimal allocation of solar based distrib-
uted generators in distribution system using Bat algorithm,” Perspect. 
Sci., vol. 8, pp. 270–272, 2016. [CrossRef]

TABLE III. 
OPTIMAL RESULTS OBTAINED AFTER DG INTEGRATION IN THE 

PRESENCE OF PEVS

Parameter HHO

DG size in kW @ bus location 236 @ 5

204 @ 11

250 @ 21

Daily real power loss in kW 402.157

% Daily real power loss reduction 77.06

Minimum bus voltage in p.u. 0.9675 at 13th hour

Maximum bus voltage in p.u. 0.9983 at 7th hour

PEVs, plug-in electric vehicles; HHO, Harris hawks’ optimization.

https://doi.org/10.1016/j.apenergy.2017.11.108
https://doi.org/10.1002/2050-7038.12230
https://doi.org/10.1016/S0378-7796(01)00101-8
https://doi.org/10.1109/TEC.2010.2044414
https://doi.org/10.1016/j.ijepes.2012.05.053
https://doi.org/10.1016/j.apenergy.2012.12.023
https://doi.org/10.1016/j.ijepes.2014.11.017
https://doi.org/10.1016/j.ijepes.2010.01.029
https://doi.org/10.1109/TIA.2013.2260117
https://doi.org/10.1109/TPWRD.2011.2158246
https://doi.org/10.1016/j.swevo.2013.12.001
https://doi.org/10.1016/j.ijepes.2015.04.021
https://doi.org/10.1016/j.pisc.2016.04.048


1110

Sambaiah. Optimal DG Allocation in Practical Distribution System
TEPES Vol 3., Issue. 1, 2-11, 2023

16.	 U. Sultana, A. B. Khairuddin, A. S. Mokhtar, N. Zareen, and B. Sultana, 
“Grey wolf optimizer based placement and sizing of multiple distributed 
generation in the distribution system,” Energy, vol. 111, pp. 525–536, 
2016. [CrossRef]

17.	 P. D. P. Reddy, V. C. V. Reddy, and T. G. Manohar, “Application of flower 
pollination algorithm for optimal placement and sizing of distributed 
generation in distribution systems,” J. Electr. Syst. Inf. Technol., vol. 3, 
no. 1, pp. 14–22, 2016. [CrossRef]

18.	 B. Das, V. Mukherjee, and D. Das, “DG placement in radial distribution 
network by symbiotic organisms search algorithm for real power loss 
minimization,” Appl. Soft Comput., vol. 49, pp. 920–936, 2016. 
[CrossRef]

19.	 V. C. Veera Reddy, “Ant Lion optimization algorithm for optimal sizing of 
renewable energy resources for loss reduction in distribution systems,” 
J. Electr. Syst. Inf. Technol., vol. 5, no. 3, pp. 663–680, 2018.

20.	 S. S. Tanwar, and D. K. Khatod, “Techno-economic and environmental 
approach for optimal placement and sizing of renewable DGs in distri-
bution system,” Energy, vol. 127, pp. 52–67, 2017. [CrossRef]

21.	 V. C. Veera Reddy, “Optimal renewable resources placement in distribu-
tion networks by combined power loss index and whale optimization 
algorithms,” J. Electr. Syst. Inf. Technol., vol. 5, no. 2, pp. 175–191, 2018.

22.	 M. H. Moradi, and M. Abedini, “A combination of genetic algorithm and 
particle swarm optimization for optimal distributed generation location 
and sizing in distribution systems with fuzzy optimal theory,” Int. J. 
Green Energy, vol. 9, no. 7, pp. 641–660, 2012. [CrossRef]

23.	 M. Gandomkar, M. Vakilian, and M. J. E. P. C. Ehsan, “A genetic–based 
tabu search algorithm for optimal DG allocation in distribution net-
works,” Electr. Power Compon. Syst., vol. 33, no. 12, pp. 1351–1362, 
2005. [CrossRef]

24.	 J. J. Jamian, M. W. Mustafa, and H. Mokhlis, “Optimal multiple distrib-
uted generation output through rank evolutionary particle swarm 
optimization,” Neurocomputing, vol. 152, pp. 190–198, 2015. 
[CrossRef]

25.	 R. Sanjay, T. Jayabarathi, T. Raghunathan, V. Ramesh, and N. Mithula-
nanthan, “Optimal allocation of distributed generation using hybrid grey 
wolf optimizer,” IEEE Access, vol. 5, pp. 14807–14818, 2017. [CrossRef]

26.	 K. S. Sambaiah, “Renewable energy source allocation in electrical distri-
bution system using water cycle algorithm,” Mater. Today Proc., vol. 58, 
pp. 20–26, 2022. [CrossRef]

27.	 P. Venkatareddy, K. S. Sambaiah, and S. N., “Optimal Mix and allocation 
of Solar and Wind Energy Sources in Active Distribution System Using 
Jaya Optimization Algorithm,” Trends in Electrical, Electronics, Com-
puter Engineering Conference (TEECCON). pp. 45–49, 2022. [CrossRef]

28.	 H. Ma, Z. Yang, P. You, and M. Fei, “Multi-objective biogeography-based 
optimization for dynamic economic emission load dispatch considering 
plug-in electric vehicles charging,” Energy, vol. 135, pp. 101–111, 2017. 
[CrossRef]

29.	 Z. Yang, K. Li, Q. Niu, Y. Xue, and A. Foley, “A self-learning TLBO based 
dynamic econo​mic/e​nviro​nment​al dispatch considering multiple plug-in 
electric vehicle loads,” J. Mod. Power Syst. Clean Energy, vol. 2, no. 4, 
pp. 298–307, 2014. [CrossRef]

30.	 K. Qian, C. Zhou, M. Allan, and Y. Yuan, “Modeling of load demand due 
to EV battery charging in distribution systems,” IEEE Trans. Power Syst., 
vol. 26, no. 2, pp. 802–810, 2010. [CrossRef]

31.	 S. K. Injeti, and V. K. Thunuguntla, “Optimal integration of DGs into radial 
distribution network in the presence of plug-in electric vehicles to mini-
mize daily active power losses and to improve the voltage profile of the 
system using bio-inspired optimization algorithms,” Prot. Control Mod. 
Power Syst., vol. 5, no. 1, pp. 1–15, 2020.

32.	 H. L. Li, X. M. Bai, and W. Tan, “Impacts of plug-in hybrid electric vehicles 
charging on distribution grid and smart charging,” In IEEE International 
Conference on Power System Technology (POWERCON). IEEE Publica-
tions, 2012, pp. 1–5.

33.	 J. Y. Yong, V. K. Ramachandaramurthy, K. M. Tan, and N. Mithulananthan, 
“A review on the state-of-the-art technologies of electric vehicle, its 
impacts and prospects,” Renew. Sustain. Energy Rev., vol. 49, pp. 
365–385, 2015. [CrossRef]

34.	 K. S. Sambaiah, “A study on challenges in adoption of electric vehicle 
and vehicle-to grid-technologies in india,” Turk J. Electr. Power Energy 
Syst., 2022. [CrossRef]

35.	 A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, 
“Harris hawks optimization: Algorithm and applications,” Future Gener. 
Comput. Syst., vol. 97, pp. 849–872, 2019. [CrossRef]

36.	 G. G. Wang, “Moth search algorithm: A bio-inspired metaheuristic algo-
rithm for global optimization problems,” Memetic Comput., vol. 10, no. 
2, pp. 151–164, 2018. [CrossRef]

37.	 J. H. Teng, “A direct approach for distribution system load flow solu-
tions,” IEEE Trans. Power Deliv., vol. 18, no. 3, pp. 882–887, 2003. 
[CrossRef]

38.	 D. Das, H. S. Nagi, and D. P. Kothari, “Novel method for solving radial 
distribution networks,” IEE Proc. Gener. Transm. Distrib., vol. 141, no. 4, 
pp. 291–298, 1994. [CrossRef]

39.	 P. Kayal, and C. K. Chanda, “Optimal mix of solar and wind distributed 
generations considering performance improvement of electrical dis-
tribution network,” Renew. Energy, vol. 75, pp. 173–186, 2015. 
[CrossRef]

https://doi.org/10.1016/j.energy.2016.05.128
https://doi.org/10.1016/j.jesit.2015.10.002
https://doi.org/10.1016/j.asoc.2016.09.015
https://doi.org/10.1016/j.energy.2017.02.172
https://doi.org/10.1080/15435075.2011.625590
https://doi.org/10.1080/15325000590964254
https://doi.org/10.1016/j.neucom.2014.11.001
https://doi.org/10.1109/ACCESS.2017.2726586
https://doi.org/10.1016/j.matpr.2021.12.569
https://doi.org/10.1109/TEECCON54414.2022.9854843
https://doi.org/10.1016/j.energy.2017.06.102
https://doi.org/10.1007/s40565-014-0087-6
https://doi.org/10.1109/TPWRS.2010.2057456
https://doi.org/10.1016/j.rser.2015.04.130
https://doi.org/10.5152/tepes.2022.2200
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1007/s12293-016-0212-3
https://doi.org/10.1109/TPWRD.2003.813818
https://doi.org/10.1049/ip-gtd:19949966
https://doi.org/10.1016/j.renene.2014.10.003

