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ABSTRACT

This paper investigates outage management in electricity distribution networks through the application of artificial intelligence techniques. The core of the 
system utilizes a diverse dataset compiled from outage management system records, weather forecasts, and geographical data to predict potential electricity 
outages. The data is rigorously analyzed to determine correlations between various weather conditions and outage occurrences, with particular emphasis on 
the impact of wind speed and storm conditions. The predictive model, a cornerstone of this research, employs a hybrid artificial intelligence algorithm that 
integrates outputs from convolutional neural networks, recursive neural networks, and extreme gradient boosting. The predictions are further refined using a 
feedforward neural network and distributed to specific districts based on historical data trends. Comparative analysis against a naive model based on historical 
averages highlights the superior performance of the hybrid model, showcasing its reduced error rates and enhanced predictive accuracy. This decision support 
system not only provides reliable outage predictions but also facilitates more effective management strategies, thus improving operational efficiencies and 
customer service in electricity distribution. The findings underscore the potential of advanced analytics in transforming utility management and pave the way 
for further innovations in smart grid technology and outage prevention strategies.

Index Terms—Artificial intelligence, decision support systems, electricity distribution, outage management

I. INTRODUCTION
The modern distribution system is a complex network that requires a 
high-speed, precise, and reliable protection system. Faults in the dis-
tribution system are inevitable, and overhead line failures are often 
more frequent compared to other main components. Faults not only 
affect the system’s reliability but also significantly impact end-users. 
The protection of transmission and distribution lines is becoming 
increasingly complex, leading to more complicated protection con-
figurations. Therefore, high-accuracy fault prediction enhances the 
operational balance and reliability of the distribution system and 
helps prevent major energy outages.

The primary question addressed by this research is: How can artifi-
cial intelligence (AI) techniques improve the prediction and manage-
ment of electricity outages in distribution networks?

The hypothesis posited by this research is that a hybrid AI model 
integrating convolutional neural network (CNN), recursive neural 
networks (RNN), and extreme gradient boosting (XGBOOST) can 

significantly enhance the accuracy of outage predictions compared 
to traditional models. By leveraging comprehensive datasets encom-
passing OMS records, weather forecasts, and geographical informa-
tion, the proposed AI-based system is expected to provide superior 
predictive performance, thereby facilitating more effective outage 
management and improving overall service reliability and opera-
tional efficiency in electricity distribution.

Electricity distribution companies (DisCom) use outage manage-
ment system (OMS) to better manage and monitor their networks 
under supply continuity criteria. Through OMSs, DisComs manage 
processes such as the detection of outages, identification of fault 
locations, informing affected customers, workforce management, 
re-energizing the system after fixing faults, keeping fault records, 
and conducting necessary reporting.

Outage management system records allows for real-time monitoring 
of the network and direct information from actions on the network. 
In the event of a fault, immediate management and direction of the 
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workforce can be conducted. However, all these processes need to 
be urgently planned according to the occurring fault, thus present-
ing an unplanned, difficult-to-manage, and error-prone workload. 
Additionally, the failure to track the fundamental causes of faults 
occurring in all distribution elements within the DisComs’ coverage 
areas leads to prolonged fault durations and disrupts system opera-
tional continuity. Fault predictions, while the responsibility of the 
operational personnel, are not systematically approached and are 
typically based on the personnel’s experiences. Aside from periodic 
maintenance, repair and maintenance planning are conducted after 
a fault has occurred, leading to time loss and inefficient work.

The developed system will improve service quality parameters of 
DisComs, efficient operation, economic personnel management, and 
quick and economical decision-making. Meeting the expectations of 
the quality factor (QF) application and QF improvements made by 
the Energy Market Regulatory Authority is intended.

Machine learning methods are used to predict the percentage of 
potential fault situations that DisCom’s low voltage and high voltage 
network elements might encounter weekly based on the cumulative 
total of faults they have previously experienced. Thus, operational 
staff can be informed about possible faults in the equipment they 
are responsible for 1 week in advance, and the developed algorithm 
will provide reports of maintenance plans for predicted faults, show-
ing which maintenance plan, if implemented, could prevent the fault 
from occurring. From this perspective, the percentage-based fault 
prediction scenarios will be developed for any element under the 
responsibility of the DisCom for the following week, thus identify-
ing potential fault points and determining the maintenance plan for 
the predicted fault. The algorithm meets the necessary work bench-
marks to reduce the previously specified fault duration.

Reducing fault durations is a critical factor in improving supply conti-
nuity. The creation of estimated fault scenarios, organization of spe-
cific maintenance plans, rapid identification of fault points, and the 
ability for field personnel to quickly apply the correct methods are 
important work benchmarks in better managing the process.

At this point, the main goal of the paper is to develop a systematic 
approach using AI technology alongside the likelihood of failures in 
network equipment such as transformers, overhead lines, and break-
ers. This involves processing data from the OMS database, which 
contains a wealth of information about equipment (which DM, 
which feeder, etc.), related previous faults, the equipment’s voltage 
level, geographical climatic information, and the age of the equip-
ment, to predict weekly potential faults for each network element, 
creating maintenance plans to preempt predicted faults and priori-
tizing proposed maintenance plans based on factors like calculated 
unserved energy, interruption duration, and the number of custom-
ers affected.

II. LITERATURE REVIEW
As global energy demand increases rapidly, electricity is among the 
fastest-growing energy sources. [1]. The increasing dependency on 
electricity worldwide causes interruptions or faults in electric services 
to create significant disruptions in daily life and lead to economic 
losses. Therefore, while trying to provide the most reliable service to 
their customers, DisComs strive to make the best use of past experi-
ences of electricity outages. These companies attempt to take preven-
tive measures to repair faults and reduce the duration of outages after 
they occur. Both the increased analytical capabilities of algorithms 
and the improved accuracy of short-term weather forecasts provide 
opportunities for DisComs to predict the number and duration of elec-
tric outages and make decisions to minimize these interruptions.

According to the International Association for Energy Economics, a 
1-hour power outage in Türkiye would cost the national industry 18 
million TL in damages [2]. Reporting the duration of these outages 
can significantly reduce the damage. In this context, knowing where 
unplanned power outages will occur and how long they will last, in 
addition to planned maintenance outages, will increase trust in com-
panies responsible for electricity distribution infrastructure.

In the literature on outage prediction, models have been developed 
that take weather forecasts as input, primarily because most of the 
causes are weather-related. An electric outage in a specific geo-
graphic area can be predicted for the number of customers affected, 
the duration customers are without electricity, the duration of a spe-
cific outage, or the number of outages occurring in a region over a 
certain period. Accurately predicting these characteristics helps fore-
cast the costs associated with the outage and aids in planning repair 
or reconstruction operations and workforce management.

According to an annual report prepared by Eaton, using forecast 
data related to lightning strikes, precipitation, wind speeds, and 
temperatures has improved the prediction of an event’s impact. The 
report reveals that a 5% annual increase in wind speed increases the 
number of customers affected by outages by 56% for that year, and 
a 10% annual increase in precipitation per square meter increases 
the number of customers affected by outages by 10% [3]. Research 
by Lawrence Berkeley National Laboratory and Stanford University 
indicates statistically significant correlations between the average 
annual number of outages a customer experiences and predictive 
variables such as wind speed, precipitation, lightning strikes, the 
number of customers per kilometer of line, daily cooling degrees, 

Main Points

•	 The use of artificial intelligence (AI) in managing electricity 
outages, utilizing a hybrid AI algorithm that combines con-
volutional neural networks, recursive neural networks, and 
extreme gradient boosting, enhanced by feedforward neural 
network for precise predictions based on weather and geo-
graphical data, is explored.

•	 The predictive system outperforms traditional models by 
analyzing relations between weather conditions and out-
ages, particularly focusing on winds and storms, to forecast 
potential disruptions more accurately.

•	 The enhanced decision support system not only optimizes 
outage management but also advances smart grid tech-
nologies and preventive strategies, significantly improving 
service reliability and operational efficiency in electricity 
distribution.
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and the distribution of underground transmission and distribution 
lines. The study also suggests that the increasing severity of major 
events over time is a primary reason for the trend in the duration of 
power outages [4].

In the literature, methods have been developed to predict the dura-
tion and number of outages, but these methods tend to overlook 
instant outages and storms. One of the earliest studies in outage pre-
diction by Brown and others proposes models aimed at determining 
the reliability of a power system [5]. The study emphasizes the need to 
consider weather-related events such as storms, which typically cause 
long-duration and continuous outages, in predictions. A study from 
the early 2000s by Balijepalli et  al [6] used the widely used Monte 
Carlo Simulation to calculate the rate of faults caused by lightning in 
power systems. This study modeled the reliability of the system based 
on storm characteristics and the system’s response to lightning condi-
tions. Zhou et al [7] compare the Poisson regression model with the 
Bayesian network model. Yang et al [8] also used Poisson regression 
to roughly determine failure rates related to weather conditions. 
Their results show that the greatest impact on the reliability of power 
systems, similar to other studies, stems from wind, ice, and lightning 
events. However, all these studies focus on determining how weather-
related events annually affect the reliability of the power system, not 
predicting expected hourly outages using specific weather events.

Reed [9] determined that the gamma distribution is a good indica-
tor of outage duration and that the square of storm speed is the 
best predictor of outage duration in the energy system. However, 
the study also adds that wind speeds should not be the only param-
eter used to predict electric outages, and including precipitation and 
other weather forecast parameters makes predicting outage dura-
tion more complex. Liu et al [10] developed Poisson and Negative 
Binomial Generalized Linear Models to explain the trends in electric-
ity outages and identified the most significant variables explaining 
changes in electricity outages as maximum wind power, the number 
of transformers, and hurricanes.

In another study, Liu et al [11] argued that models could be better 
developed using explanatory variables related to trees (e.g., number, 
type, age of trees, and frequency of tree cutting) and infrastructure 
variables (age and condition of cables) to predict outage durations 
related to weather conditions.

Some studies in the literature on electricity outage predictions have 
used decision tree structures. Guikema et al [12] used both regres-
sion-based models and data mining approaches (Classification and 
Regression Trees (CART) and Bayesian Regression Trees (BART)) to 
predict power system outages and outage durations. Their stud-
ies indicated that data mining approaches performed better than 
regression-based approaches. [13] developed a two-stage model 
using CART and Poisson regression model to predict the number of 
electricity outages. The CART algorithm was used to model whether 
a location would experience an electricity outage, while the Poisson 
regression model was used to predict the number of electricity out-
ages at a specific location. Their studies do not include predictions of 
the number of customers affected by an outage or the duration of a 
specific outage at a location.

Guikema et  al [14] developed a spatially generalized electricity 
outage prediction model (SGHOPM) for the entire Gulf Coast and 
East Coast of America. This study showed that spatially general-
ized models are useful to utility companies and emergency man-
agers as both operational and risk management tools. McRoberts 
et al [15] improved the SGHOPM algorithm developed by Guikema 
and others by adding local environmental variables. He et al [16] 
conducted another study using two statistical methods. In their 
study, they input variables such as soil moisture, land cover, power 
infrastructure locations, and categorical tree leaf phenology with 
weather forecast values into BART and Quantile Regression Forests 
models. They suggested that the performance of the model 
changes depending on the spatial resolution and recommended 
applying both models together to predict outages at multiple spa-
tial resolutions [16].

In addition to purely using decision trees, studies have also been 
conducted to develop electricity prediction models using boosted 
(ensemble) decision trees. Kankanala et  al [17] found that the 
AdaBoost enhanced NN algorithm performed better than other 
modeling methods, including traditional neural networks and linear 
regression models.

Besides decision trees and regression models, models based on 
artificial neural networks (ANNs) have begun to be frequently used 
in electric outage prediction. [18] used an ANN and support vector 
machine approach to detect faults in radial distribution systems. 
Unlike traditional fault prediction methods, they used measure-
ments found in transformer stations, circuit breakers, and relay con-
ditions. The results indicated the feasibility of applying the proposed 
method in practical distribution system fault diagnostics.

Jamil et al [19] attempted to predict fault locations on transmission 
lines in their study. They used feedforward neural networks (FFNNs) 
and tested them in different operating conditions, improving suc-
cess rates compared to traditional fault location prediction methods. 
Combining the neural network with multi-resolution analysis based 
on wavelet transformation was effective in reducing fault location 
prediction errors.

Because the electricity outage problem involves predicting both 
the duration and location of outages, it is a type of spatiotempo-
ral problem. In many real-world applications such as intelligent 
transportation, urban planning, public safety, health, and environ-
mental management, extracting valuable information from spatio-
temporal data is critically important. As the number, volume, and 
resolution of spatiotemporal datasets rapidly increase, traditional 
data mining methods are insufficient. In recent years, the devel-
opment of deep learning techniques and their strong hierarchical 
feature learning capabilities, both spatially and temporally, have 
led to the use of deep learning in this field. Deep learning meth-
ods, such as CNN and RNN, are often used to solve spatiotemporal 
problems [20-22].

Due to the spatiotemporal characteristics of the electricity outage 
problem and the increase in computing power of machines, a shift 
towards deep learning techniques in solving the problem is expected.
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III. DEVELOPMENT OF THE DECISION SUPPORT SYSTEM
In this paper, AI algorithms are used to process historical fault data 
from Aydin–Denizli–Muğla distribution area, along with OMS records 
and meteorological and geographical information from the fault loca-
tions. This data serves as training data for a predictive model, which 
forecasts the types of faults that could occur in different network 
elements 1 week into the future. The model continuously learns and 
increases in accuracy over time as it processes accumulating fault 
data, meteorological forecasts, and geographical information.

The developed system serves as a decision-making tool for users in 
case of potential faults. One of the objectives of setting up the system 
as a DSS is to provide deeper insights for planning fault interventions 
and, when necessary, prioritize faults. Accordingly, an algorithm is 
designed that can create maintenance plans for predicted faults 
and prioritize these maintenance plans based on criteria such as the 
number of customers affected and energy not supplied.

A. Assumptions
Weather forecasts are one of the primary inputs in the algorithms. 
The weather data used in this paper consists of both historical 
and forecast data. According to the official page of the General 
Directorate of Meteorology under the Ministry of Agriculture and 
Forestry:

•	 Monthly forecasts are prepared based on the data and products 
of the European Centre for Medium-Range Weather Forecasts, 
of which Türkiye is a founding member and supported by 34 
countries, mostly members of the European Union.

•	 The monthly forecast model is designed to predict large-scale 
weather events (air masses, fronts, mid-latitude pressure sys-
tems). Smaller-scale local meteorological events may not be 
represented.

•	 Weather temperature and precipitation averages are consid-
ered and evaluated as being below or above seasonal normals 
and updated twice a week.

•	 Due to its geographic location, the model’s accuracy is gener-
ally higher in summer and winter months compared to spring. 
Temperature is generally a more reliably predicted parameter 
than precipitation.

•	 Since different methods and tools are used in short, medium, 
and long-term forecasts, there may be differences with other 
published forecast products.

For city and district centers regarding weather forecasts:

•	 Hourly forecasts in the expected event formulation represent 
the weather conditions of the past 3-hour period.

•	 The wind gust parameter in hourly forecasts represents the sud-
den increase in wind speed during the past 3 hours.

•	 Felt temperature parameter in hourly forecasts is calculated 
based on the predicted air temperature at the same hour along 
with relative humidity and wind values. This temperature is a 
subjective concept as it is influenced by climatic environment, 
clothing thermal resistance, body structure, and personal condi-
tion as much as by meteorological factors such as thermometer 
temperature, relative humidity, wind, and radiation.

B. System Architecture
Users can access fault predictions through OMS web and mobile appli-
cations and make configuration changes to the system. Weather data 
is transferred to the OMS system via Rest-API service. Similarly, load 
data for distribution transformers is transferred from the Automatic 
Meter Reading System (OSOS) system to the OMS system via Rest-
API service. AI algorithms that generate forecasts receive OSOS and 
weather data through Rest-API services from OMS. They write their 
forecasts directly into the OMS database. Forecasts recorded in the 
OMS database are presented to users on mobile and web platforms.

C. Definition of AI Models in the System Definition 
The recording hierarchy, device, channel, tag definitions, and updates 
of prediction data in the OMS system have been explained.

Prediction model results are added to the OMS system as a data 
source. In the OMS, data sources are defined as devices. A standard-
ized identification method allows different prediction models to be 
implemented or removed. If desired, data flow from the prediction 
model can be stopped.

1) Data Recording Hierarchy in The OMS
•	 Device: The prediction model is added as a device. Device refers 

to a system element that can measure and record. As the ser-
vice providing meteorological data is also a data source, it is 
defined as a device in the system.

•	 Channel: Units where predictions are made are defined as chan-
nels connected to the device. Units can be added as departments 
(district) or distribution centers. The channel structure allows 
the prediction model to be applied on a unit basis instead of the 
entire distribution area, making the system dynamic. It enables 
the application of the prediction model for desired departments. 
For instance, if the prediction model works well in the Bodrum 
district but not in Marmaris, the channel for Marmaris can be 
deactivated in the system. This provides a significant advantage 
in maintaining the model’s performance, especially in regional 
mismatches in input data sources affecting the model’s outcome 
(e.g., regional inconsistencies in weather data).

•	 Tag: Tags are added for parameters resulting from the predic-
tion model. Tags used as outputs of the prediction model are 
specified below:
•	 Total number of faults
•	 Number of faults with a duration of 0–1 hours
•	 Number of faults with a duration of 1–3 hours
•	 Number of faults with a duration of 3–6 hours
•	 Number of faults lasting over 6 hours
•	 Total fault duration
•	 System Average Interruption Duration Index (SAIDI)
•	 System Average Interruption Frequency Index (SAIFI)
•	 Total number of affected subscribers

For example, the configuration structure for a prediction model is 
as follows:

•	 Device: Fault Prediction Model 1
•	 Channel 1: Bodrum

•	 Tag 1: Total number of faults
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•	 Tag 2: Number of faults with a duration of 0–1 hours
•	 Tag 3: Number of faults with a duration of 1–3 hours
•	 Tag 4: Number of faults with a duration of 3–6 hours
•	 Tag 5: Number of faults lasting over 6 hours
•	 Tag 6: Total fault duration
•	 Tag 7: SAIDI
•	 Tag 8: SAIFI
•	 Tag 9: Total number of affected subscribers

•	 Channel 2: Marmaris
•	 Tag 1: Total number of faults
•	 Tag 2: Number of faults with a duration of 0–1 hours
•	 Tag 3: Number of faults with a duration of 1–3 hours
•	 Tag 4: Number of faults with a duration of 3–6 hours
•	 Tag 5: Number of faults lasting over 6 hours
•	 Tag 6: Total fault duration
•	 Tag 7: SAIDI
•	 Tag 8: SAIFI
•	 Tag 9: Total number of affected subscribers

Predictions from the models are produced for 72 hours ahead in 
hourly intervals. Predictions are created daily, and multiple predic-
tion values for the same date and time are recorded. These values 
serve as a data source to show prediction trends. Particularly with 
weather forecasts becoming clearer the day before, changes in fault 
predictions may occur.

2) Recording Weather Data Definition
The recording hierarchy, device, channel, tag definitions, and updates 
of meteorological data in the OMS system have been explained. 
Information about the recording method and usage of alerts and 
warnings from the Meteorological Data Service in OMS has been 
provided.

Meteorological data is transferred to the OMS system via a web ser-
vice and recorded in the database for use in software. Each predic-
tion point (district center) is recorded in megawatt/hour (MWM), and 
meteorological parameters are defined separately for each point.

The recording hierarchy of measurement points in the OMS system 
is specified below:

•	 Device: The Meteorological Data Service is added as a device. 
Device refers to a system element that can measure and record. 
Since the service providing meteorological data is also a data 
source, it is defined as a device in the system.

•	 Channel: Each prediction point is added as a channel connected 
to the device. If data collection from the prediction points where 
meteorological data is received is to be stopped or a new predic-
tion point is to be defined, management can be done from the 
device management area in the application.

•	 Tag: Each meteorological parameter is defined as a tag in the 
system. Management of parameters and alarm definitions is 
done through tags. The meteorological parameters used for 
prediction are listed below:
•	 Precipitation
•	 Temperature
•	 Wind power

•	 Radiation
•	 Cloud cover percentage
•	 Humidity

For example, the configuration structure for a prediction point is as 
follows:
•	 Device: Meteorological Data Service

•	 Channel 1: Bodrum
•	 Tag 1: Precipitation
•	 Tag 2: Temperature
•	 Tag 3: Wind power
•	 Tag 4: Radiation
•	 Tag 5: Cloud cover percentage
•	 Tag 6: Humidity

•	 Channel 2: Marmaris
•	 Tag 1: Precipitation
•	 Tag 2: Temperature
•	 Tag 3: Wind power
•	 Tag 4: Radiation
•	 Tag 5: Cloud cover percentage
•	 Tag 6: Humidity

3) Recording OSOS Transformer Load Data Definition
The recording hierarchy, device, channel, tag definitions, and 
updates of transformer load data from the OSOS system in the OMS 
system have been explained. Transformer load data from the OSOS 
system is transferred to the OMS system via a web service. Data is 
recorded based on transformers, and the transformer and distribu-
tion center matching are retrieved from the Geographic Information 
System (GIS) system. Past load information for each transformer is 
used as input for the algorithm. The recording hierarchy of the data 
is explained below:

•	 Device: OSOS Data Service is added as a device. Device refers to 
a system element that can measure and record (RTU, IED, etc.). 
Since the OSOS data service is also a data source, it is defined as 
a device in the system.

•	 Channel: Each transformer is added as a channel connected to 
the device.

•	 Tag: Load data is added as a tag.

IV. DECISION SUPPORT SYSTEM APPLICATION
A. Data Sources
Data sources that can be evaluated for fault analysis in this paper are 
shown in Table I. In the electricity distribution network, weather con-
ditions are one of the major factors of faults in overhead networks. 
During the test data preparation, priority was given to fault data and 
weather data.

1) OMS Data
Unplanned outage data from 2018 to 2023 are collected from OMS 
and included in the system. Data available from OMS for the dataset 
is presented in Table II.

2) Weather Data
Hourly forecast data for the same period are obtained from the 
Ubimet data source. Parameters of the weather data collected from 
Ubimet are shown in Table III.
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B. Methodology
1) Categories
Predictions are classified according to the duration of the outages. 
Outages are classified into four categories based on duration:

•	 Category 1: Outages lasting less than 1 hour
•	 Category 2: Outages lasting longer than 1 hour and less than 3 

hours
•	 Category 3: Outages lasting longer than 3 hours and less than 

hours
•	 Category 4: Outages lasting longer than 6 hours

2) Characteristics of the Outages
The developed algorithm predicts the total number of outages and 
the number of outages classified by duration for each hour within 
the next 72 hours in the provinces and their associated districts. The 
outage prediction algorithm uses AI methods to generate predic-
tions. Thus, a sufficient number of outages must have occurred, and 
this pattern must be modeled by the algorithm.

Upon reviewing the outages in the districts, it is observed that many 
districts have not experienced a sufficient number of outages to yield 
accurate results from learning methods. Additionally, it is not possible 
to obtain weather data specific to each district, which is a fundamen-
tal input for the model. Therefore, the outage prediction algorithm 
makes total and four-category classified outage predictions for the 
three provinces in the Aydin–Denizli-Muğla region and then distrib-
utes these predictions to the associated districts. This distribution 
uses the ratio of outages that occurred in each district over a certain 
period to the outages that occurred in the relevant province.

The developed algorithm for hourly outage prediction uses past out-
ages and their durations along with the general weather forecast for 
the province. The weather data includes humidity, cloud cover, radi-
ation, wind speed, wind direction, temperature, and precipitation 

probability. The scope of the dataset is from August 2018 to March 
2023, and the frequency is hourly.

3) Theoretical Background
Forecasting model output can be represented as (1):

	 P(t) = f(Wt, Ht, Gt) 	 (1)

Where

P(t): Represents the predicted number of outages at time t.

TABLE I. 
DATA SOURCES

N Main Source Description

1 OMS Outage data

2 Weather data Weather related data

3 GIS Network data

4 WFM Fault location data, Used materials

5 Geographic information Regional geographic data

6 EAM Maintenance data

7 OSOS Electrical power data

8 SCADA Electrical power data, fault current 
information

9 MBS Subscriber information (tariffs, 
consumption)

GIS, geographic information system; OMS, outage management system.

TABLE II. 
OMS DATA PARAMETERS

ID

Level

Department

Distribution center

Switching point

Province

District

Neighborhood/village

Street

GIS ID

Outage reason

Cause

Source

Duration

Notification

Outage duration

Start t﻿ime

End t﻿ime

Urban area HV subscriber

Urban area LV subscriber

Rural area HV subscriber

Rural area LV subscriber

Affected load

Affected transformer count

Unsold energy

Priority

Main level

HV, high voltage; LV, low voltage.



Avcı. Hybrid Artificial Intelligence Techniques for Enhanced Electricity Outage Prediction and Management in Distribution Networks

6968

TEPES Vol 4., Issue. 2, 63-73, 2024

f(): Denotes the forecasting function, which is modeled using AI tech-
niques (e.g., CNN, RNN, XGBOOST).

Wt: Weather data at time t, including parameters like wind speed, 
precipitation, and temperature.

Ht: Historical outage data up to time t.

Gt: Geographical data relevant to the distribution network.

Detailed Steps:

1.	 Input weather data (Wt): Collect data on various weather 
parameters known to affect outages.

2.	 Incorporate historical data (H): Use past outage records to iden-
tify patterns and trends.

3.	 Utilize geographical information (Gt): Include data such as 
terrain type, urban/rural classification, and proximity to key 
infrastructure.

The forecasting function f processes these inputs to predict the num-
ber of outages P(t).

The error at time t can be calculated using the (2):

	 E t
N

P t O t
i

N

i i� � � � �� � �
��1

1
� � � 	 (2)

Where

E(t): Represents the error at time t.

N: Total number of prediction instances.

Pi(t): Predicted outages for instance i at time t.

Oi(t): Observed outages for instance i at time t.

Detailed Steps:

1.	 Calculate absolute error: For each instance i, compute the 
absolute difference between predicted Pi (t) and observed Oi (t)
outages.

2.	 Average the errors: Sum the absolute errors for all instances and 
divide by the total number N to get the average error E (t).

This equation helps in assessing the accuracy of the forecasting 
model by measuring the average deviation of predictions from actual 
values.

The distribution of predicted outages to specific districts can be rep-
resented as (3):

	 D d t
R d t

d

D,
,

,
� � � � �� � �

� �
��

P t R d t

1

	 (3)

Where

D (d,t): Distributed predicted outages for district d at time t.

P (t): Total predicted outages at time t (from1).

R (d,t): Ratio or historical weight of outages in district d at time t.

d

D

R d t
�
� � �

1

, : Sum of ratios for all districts, ensuring normalization.

Detailed Steps:

1.	 Compute historical ratios: Determine the historical proportion 
of outages in each district R(d,t).

2.	 Calculate total outages: Use the total predicted outages P (t) 
from (1).

3.	 Distribute outages: Multiply P (t) by the ratio R (d,t) and nor-
malize by the sum of all ratios to get the distributed prediction 
D (d,t).

This equation allocates the total predicted outages to individual dis-
tricts based on historical data, ensuring that predictions are contex-
tually accurate for each district.

TABLE III. 
WEATHER DATA

Temperature

Dew point

Cumulative precipitation

Snow line

M line

Relative humidity

Wind speed

Wind direction

Gust

Precipitation probability

Snow probability

Sunshine duration

Cloud cover

Max radiation

UV radiation

Symbol

Snow depth

Precipitation

Direct radiation

Diffuse radiation

Surface radiation
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4) AI Models

Model 1. CNN 
The CNN algorithm has been successful in image processing prob-
lems in recent years. The convolution process, which occurs through 
filters on the pixels that make up the image, identifies patterns in the 
image, and the repeated process of this operation generates results. 
In Model 1, weather data and past outage values are used as inputs 
in the developed CNN algorithm, and predictions for the next 72 
hours are generated as outputs.

Model 2. XGBOOST
XGBOOST is a decision tree-based model. The model resamples the 
input space repeatedly to create new datasets and produces results 
using regression trees (weak learners) generated from these sets. 
The input for this model, as in Model 1, includes weather data and 
past outage data.

Model 3. RNN
The RNN algorithm is a deep learning method used to model time-
dependent data. The RNN algorithm uses past outage values to 
calculate the hidden states of these outages, performs pattern 
recognition, and predicts the future by integrating these states 
with past outage data. It is evident that the outages, as a result 
of external factors, create a pattern over time. Therefore, outages 
can be predicted using past outage data. This model uses past 120-
hour outage data as input and generates predictions for the next 
72 hours.

Model 4. Hybrid Model as FNN
The provincial-level outage prediction hybrid learning algorithm is 
developed to make more accurate predictions using the forecasts 
from the above three models. In predictive modeling literature, such 
as energy price prediction and demand forecasting, hybrid mod-
els have shown superiority over individual models. The developed 
hybrid algorithm reduces the error amount made by individual mod-
els and produces better predictions as a result. This algorithm pre-
dicts outages for the next 72 hours at the provincial level through the 
FNN algorithm, which is a type of deep learning structure. The FNN 
algorithm processes the input set in hidden layers through nonlinear 
transformations to produce output.

5) Stages of the AI Algorithm
The developed algorithm works in three stages. First, it predicts out-
ages at the provincial level for the next 72 hours hourly, then distrib-
utes these outage predictions to the district level. The model that 
predicts at the provincial level is a hybrid learning algorithm. The 
hybrid learning algorithm aims to achieve better results by using the 
outcomes produced by different learning models. The results fed to 
the hybrid algorithm come from CNN, RNN, and XGBOOST models. 
After obtaining results from these models, final prediction results are 
generated with a new FNN algorithm. Additionally, a model has been 
developed that predicts outages in four categories based on outage 
duration at the provincial level.

In the first stage, model 4 (Hybrid Model) predicts the total number 
of outages and outages classified into four categories by duration for 
the next 72 hours at the provincial level.

In the second stage, the total outage predictions produced are dis-
tributed to the districts associated with the province based on the 
ratio of outages that occurred in the last 3 months. For example, if 
the predicted number of outages at 12:00 PM on April 20, 2020 is 
10 and 20% of the outages that occurred in Muğla province at 12:00 
PM over the last 3 months occurred in Bodrum, then the predicted 
number of outages for Bodrum at 12:00 PM on April 20, 2020 is 2.

In the third stage, the predictions made in the districts are classified 
into four categories. This process is based on the ratio of outages 
that occurred in the last 3 months in four categories to the total out-
ages that occurred in the last 3 months. For example, if the predicted 
number of outages for Bodrum at 12:00 PM on April 20, 2020 is 2 
and the ratios of outages that occurred at 12:00 PM in Bodrum, clas-
sified by outage duration, are 35%, 40%, 25%, and 10% respectively, 
then the predictions for Bodrum at 12:00 PM for the four categories 
are (2, 2, 0, 0) respectively.

V. RESULTS AND DISCUSSION
A. Provincial Level Results
Prediction results of individual models and the most basic model in 
the literature, the naive model, are compared with the predictions 
produced by the developed hybrid model using the performance 
metrics mean absolute error (MAE) and mean squared error (MSE) 
(Tables IV–VI). The expectation from this comparison is that the 
hybrid model will perform better than the individual models and 
the naive model. The naive model predicts the next 24 hours of out-
ages based on the previous 24 hours. This comparison with the naive 
model is a basic method to check whether the developed AI mod-
els can produce better results than the simplest benchmark model. 

TABLE IV. 
AYDIN PROVINCIAL TOTAL OUTAGE PREDICTION ERROR RESULTS

Aydın MAE MSE

Model 1 0.180 0.9216

Model 2 0.186 1.0568

Model 3 0.240 0.9801

Model 4 0.180 0.3481

Naive 0.310 1.9600

TABLE V. 
DENIZLI PROVINCIAL TOTAL OUTAGE PREDICTION ERROR RESULTS

Denizli MAE MSE

Model 1 0.220 2.3747

Model 2 0.317 2.7225

Model 3 0.210 0.9216

Model 4 0.20 0.450

Naive 0.361 3.7249
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Results show that the error of the developed hybrid model is lower 
than the prediction errors produced by the individual models and 
the naive model. Thus, the developed model is superior to the indi-
vidual models and the naive model.

B. District Level Results
Prediction results made by the developed algorithm for the dis-
tricts in the Aydın–Denizli-Muğla distribution region are compared 
with the naive model. As can be seen from the Tables VII–IX, the 
errors produced by the AI models are lower than those of the 
naive model.

VI. CONCLUSION
The development and deployment of the DSS described in this paper 
mark a significant advancement in the management of electricity 
distribution networks. By integrating machine learning and deep 
learning techniques, particularly through a hybrid model combin-
ing CNN, RNN, and XGBOOST algorithms, the system effectively 
predicts electricity outages with greater accuracy than traditional 
models. The utilization of a comprehensive dataset, including outage 
data, weather conditions, and geographical information, allows for 
nuanced analysis and improved prediction capabilities.

TABLE VI. 
MUĞLA PROVINCIAL TOTAL OUTAGE PREDICTION ERROR RESULTS

Muğla MAE MSE

Model 1 0.420 2.5600

Model 2 0.447 4.1047

Model 3 0.260 1.9600

Model 4 0.213 1.1278

Naive 0.321 3.2400

TABLE VII. 
OUTAGE PREDICTION ERROR RESULTS FOR DISTRICTS IN AYDIN

Aydın Bozdoğan Buharkent Didim Efeler Germendik Karacasu Karpuzlu Koçarlı

MSE (Model 4) 0.190 0.044 0.450 0.463 0.154 0.056 0.046 0.120

MSE(Naive) 0.215 0.066 0.464 0.447 0.194 0.129 0.121 0.166

MAE (Model 4) 0.198 0.044 0.521 0.592 0.192 0.056 0.050 0.123

MAE(Naive) 0.291 0.073 0.752 0.710 0.252 0.159 0.149 0.212

Aydın Kuyucak Kuşadası Köşk Nazilli Sultanhisar Söke Yenipazar Çine İncirliova

MSE(Model 4) 0.056 0.500 0.056 0.356 0.069 0.404 0.054 0.263 0.104

MSE(Naive) 0.114 0.484 0.110 0.369 0.116 0.403 0.088 0.322 0.168

MAE(Model 4) 0.065 0.538 0.065 0.385 0.077 0.467 0.058 0.442 0.125

MAE(Naive) 0.135 0.792 0.128 0.548 0.139 0.651 0.099 0.482 0.211

TABLE VIII. 
OUTAGE PREDICTION ERROR RESULTS FOR DISTRICTS IN DENIZLI

Denizli Acıpayam Babadağ Baklan Bekilli Beyağaç Bozkurt Buldan Güney Honaz

MSE (Model 4) 0.333 0.019 0.013 0.044 0.006 0.031 0.106 0.054 0.117

MSE(Naive) 0.446 0.019 0.013 0.044 0.006 0.035 0.135 0.067 0.133

MAE (Model 4) 0.249 0.034 0.032 0.047 0.040 0.063 0.166 0.077 0.070

MAE (Naive) 0.333 0.042 0.035 0.055 0.044 0.076 0.203 0.092 0.083

Denizli Merkezefendi Pamukkale Sarayköy Serinhisar Tavas Çal Çameli Çardak Çivril Kale

MSE (Model 4) 0.423 0.344 0.013 0.044 0.167 0.071 0.110 0.013 0.402 0.067

MSE (Naive) 0.502 0.365 0.017 0.056 0.192 0.083 0.110 0.013 0.473 0.092

MAE (Model 4) 0.362 0.368 0.064 0.066 0.195 0.087 0.118 0.038 0.324 0.103

MAE (Naive) 0.618 0.565 0.075 0.075 0.262 0.109 0.147 0.041 0.478 0.129
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The implementation of the system demonstrates a clear enhance-
ment in predictive accuracy, as evidenced by the reduced error rates 
when compared to a naive model based on historical averages. This 
accuracy is crucial for effective preemptive actions and optimizing 
resource allocation in outage management. Furthermore, the ability 
to classify predicted outages into four time-based categories allows 
for more specific and effective response strategies, enhancing ser-
vice reliability and operational efficiency.

Moreover, the success of the system underscores the potential for 
broader applications within utility management and suggests that 
similar approaches could be employed to tackle other challenges 
within the energy sector. The adaptability and scalability of the 
model present opportunities for future research and development 
aimed at refining prediction algorithms and expanding their applica-
bility to other regions and utility types.

In conclusion, the DSS developed through this research provides a 
robust tool for enhancing the resilience and efficiency of electric-
ity distribution networks, offering significant benefits to utilities and 
their customers.

There are some limitations and challenges to this study: The first 
one is the accuracy of the AI-based OMS heavily relies on the qual-
ity and comprehensiveness of the input data. Incomplete or inac-
curate data can lead to suboptimal predictions. Inconsistent data 
recording practices and the lack of standardized data formats across 
different regions or utilities can hinder the system’s performance. 
The second one is processing large volumes of real-time data from 
various sources (e.g., weather data, sensor data) requires robust 
computational resources. High computational demands may lead 
to increased operational costs and necessitate the use of advanced 
hardware and cloud computing solutions.

Future research could explore the integration of more diverse data 
sources, such as real-time sensor data from smart meters, IoT 
devices, and advanced weather radar systems. This could enhance 
the accuracy and timeliness of outage predictions.

Expanding the system to cover different geographic regions and vary-
ing infrastructure types (e.g., urban vs. rural, underground vs. over-
head lines) could validate the model’s scalability and adaptability.

Developing predictive maintenance algorithms that not only predict 
outages but also suggest specific maintenance actions for network 
elements could further enhance operational efficiency.
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